Suppr超能文献

用于数字病理学图像分割中多阈值优化的改进遗传算法。

Improved genetic algorithm for multi-threshold optimization in digital pathology image segmentation.

作者信息

Huang Tangsen, Yin Haibing, Huang Xingru

机构信息

School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.

School of Information Engineering, Hunan University of Science and Engineering, Yongzhou, 425199, China.

出版信息

Sci Rep. 2024 Sep 28;14(1):22454. doi: 10.1038/s41598-024-73335-6.

Abstract

This paper presents an improved genetic algorithm focused on multi-threshold optimization for image segmentation in digital pathology. By innovatively enhancing the selection mechanism and crossover operation, the limitations of traditional genetic algorithms are effectively addressed, significantly improving both segmentation accuracy and computational efficiency. Experimental results demonstrate that the improved genetic algorithm achieves the best balance between precision and recall within the threshold range of 0.02 to 0.05, and it significantly outperforms traditional methods in terms of segmentation performance. Segmentation quality is quantified using metrics such as precision, recall, and F1 score, and statistical tests confirm the superior performance of the algorithm, especially in its global search capabilities for complex optimization problems. Although the algorithm's computation time is relatively long, its notable advantages in segmentation quality, particularly in handling high-precision segmentation tasks for complex images, are highly pronounced. The experiments also show that the algorithm exhibits strong robustness and stability, maintaining reliable performance under different initial conditions. Compared to general segmentation models, this algorithm demonstrates significant advantages in specialized tasks, such as pathology image segmentation, especially in resource-constrained environments. Therefore, this improved genetic algorithm offers an efficient and precise multi-threshold optimization solution for image segmentation, providing valuable reference for practical applications.

摘要

本文提出了一种改进的遗传算法,专注于数字病理学中图像分割的多阈值优化。通过创新性地增强选择机制和交叉操作,有效解决了传统遗传算法的局限性,显著提高了分割精度和计算效率。实验结果表明,改进的遗传算法在0.02至0.05的阈值范围内实现了精度和召回率之间的最佳平衡,并且在分割性能方面明显优于传统方法。使用精度、召回率和F1分数等指标对分割质量进行量化,统计测试证实了该算法的优越性能,特别是在复杂优化问题的全局搜索能力方面。尽管该算法的计算时间相对较长,但其在分割质量方面的显著优势,尤其是在处理复杂图像的高精度分割任务时,非常明显。实验还表明,该算法具有很强的鲁棒性和稳定性,在不同初始条件下保持可靠的性能。与一般分割模型相比,该算法在诸如病理图像分割等专门任务中显示出显著优势,特别是在资源受限的环境中。因此,这种改进的遗传算法为图像分割提供了一种高效且精确的多阈值优化解决方案,为实际应用提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01cc/11439074/26c327a780d5/41598_2024_73335_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验