Suppr超能文献

分析和验证与衰老相关的基因在胶质母细胞瘤预后和免疫功能中的作用。

Analysis and validation of aging-related genes in prognosis and immune function of glioblastoma.

机构信息

The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.

School of Biomedical Engineering, Southern Medical University, Guangzhou, China.

出版信息

BMC Med Genomics. 2023 May 19;16(1):109. doi: 10.1186/s12920-023-01538-3.

Abstract

BACKGROUND

Glioblastoma (GBM) is a common malignant brain tumor with poor prognosis and high mortality. Numerous reports have identified the correlation between aging and the prognosis of patients with GBM. The purpose of this study was to establish a prognostic model for GBM patients based on aging-related gene (ARG) to help determine the prognosis of GBM patients.

METHODS

143 patients with GBM from The Cancer Genomic Atlas (TCGA), 218 patients with GBM from the Chinese Glioma Genomic Atlas (CGGA) of China and 50 patients from Gene Expression Omnibus (GEO) were included in the study. R software (V4.2.1) and bioinformatics statistical methods were used to develop prognostic models and study immune infiltration and mutation characteristics.

RESULTS

Thirteen genes were screened out and used to establish the prognostic model finally, and the risk scores of the prognostic model was an independent factor (P < 0.001), which indicated a good prediction ability. In addition, there are significant differences in immune infiltration and mutation characteristics between the two groups with high and low risk scores.

CONCLUSION

The prognostic model of GBM patients based on ARGs can predict the prognosis of GBM patients. However, this signature requires further investigation and validation in larger cohort studies.

摘要

背景

胶质母细胞瘤(GBM)是一种常见的恶性脑肿瘤,预后差,死亡率高。许多报告已经确定了衰老与 GBM 患者预后之间的相关性。本研究的目的是基于与衰老相关的基因(ARG)为 GBM 患者建立预后模型,以帮助确定 GBM 患者的预后。

方法

本研究纳入了来自癌症基因组图谱(TCGA)的 143 名 GBM 患者、来自中国脑胶质瘤基因组图谱(CGGA)的 218 名 GBM 患者和来自基因表达综合数据库(GEO)的 50 名患者。使用 R 软件(V4.2.1)和生物信息学统计方法来开发预后模型,并研究免疫浸润和突变特征。

结果

最终筛选出 13 个基因用于建立预后模型,该预后模型的风险评分是一个独立的因素(P<0.001),这表明其具有良好的预测能力。此外,高低风险评分两组之间的免疫浸润和突变特征存在显著差异。

结论

基于 ARG 的 GBM 患者预后模型可以预测 GBM 患者的预后。然而,该特征需要在更大的队列研究中进一步研究和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39c3/10197415/7cef25f241ec/12920_2023_1538_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验