Suppr超能文献

运用人工智能对初级保健中呼吸系统症状患者进行分诊以改善患者结局:一项回顾性诊断准确性研究。

Triaging Patients With Artificial Intelligence for Respiratory Symptoms in Primary Care to Improve Patient Outcomes: A Retrospective Diagnostic Accuracy Study.

机构信息

Primary Health Care of the Capital Area, Iceland.

Department of Computer Science, Reykjavik University, Reykjavík, Iceland.

出版信息

Ann Fam Med. 2023 May-Jun;21(3):240-248. doi: 10.1370/afm.2970.

Abstract

PURPOSE

Respiratory symptoms are the most common presenting complaint in primary care. Often these symptoms are self resolving, but they can indicate a severe illness. With increasing physician workload and health care costs, triaging patients before in-person consultations would be helpful, possibly offering low-risk patients other means of communication. The objective of this study was to train a machine learning model to triage patients with respiratory symptoms before visiting a primary care clinic and examine patient outcomes in the context of the triage.

METHODS

We trained a machine learning model, using clinical features only available before a medical visit. Clinical text notes were extracted from 1,500 records for patients that received 1 of 7 codes (J00, J10, JII, J15, J20, J44, J45). All primary care clinics in the Reykjavík area of Iceland were included. The model scored patients in 2 extrinsic data sets and divided them into 10 risk groups (higher values having greater risk). We analyzed selected outcomes in each group.

RESULTS

Risk groups 1 through 5 consisted of younger patients with lower C-reactive protein values, re-evaluation rates in primary and emergency care, antibiotic prescription rates, chest x-ray (CXR) referrals, and CXRs with signs of pneumonia, compared with groups 6 through 10. Groups 1 through 5 had no CXRs with signs of pneumonia or diagnosis of pneumonia by a physician.

CONCLUSIONS

The model triaged patients in line with expected outcomes. The model can reduce the number of CXR referrals by eliminating them in risk groups 1 through 5, thus decreasing clinically insignificant incidentaloma findings without input from clinicians.

摘要

目的

呼吸症状是初级保健中最常见的就诊主诉。这些症状通常会自行缓解,但也可能表明病情严重。随着医生工作量和医疗保健成本的增加,在面对面咨询之前对患者进行分诊将有所帮助,这可能为低风险患者提供其他沟通方式。本研究的目的是训练机器学习模型,以便在患者前往初级保健诊所之前对其进行分诊,并在分诊的背景下检查患者的结局。

方法

我们使用就诊前仅可获得的临床特征来训练机器学习模型。从接受以下 7 个代码之一(J00、J10、JII、J15、J20、J44、J45)的 1500 名患者的记录中提取临床文本注释。冰岛雷克雅未克地区的所有初级保健诊所均包含在内。该模型在 2 个外部数据集上对患者进行评分,并将其分为 10 个风险组(分值越高,风险越大)。我们分析了每个组中的选定结局。

结果

风险组 1 至 5 由年轻患者和较低的 C 反应蛋白值组成,在初级保健和急诊中再次评估的比例、抗生素处方率、胸部 X 光(CXR)转诊率以及 CXR 有肺炎迹象的比例均低于风险组 6 至 10。风险组 1 至 5 中没有 CXR 有肺炎迹象或医生诊断为肺炎。

结论

该模型的分诊与预期结局一致。通过在风险组 1 至 5 中消除 CXR 转诊,可以减少 CXR 转诊数量,从而减少无临床意义的偶然发现,而无需临床医生的投入。

相似文献

本文引用的文献

8
Clinical scores in primary care.初级保健中的临床评分
Br J Gen Pract. 2020 Mar 26;70(693):163. doi: 10.3399/bjgp20X708941. Print 2020 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验