Faculty of Natural and Agricultural Sciences, University of the Free State, Bleomfontein, 9300, South Africa.
Department of Basic Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan.
Comput Biol Med. 2024 Oct;181:109069. doi: 10.1016/j.compbiomed.2024.109069. Epub 2024 Aug 24.
The resurgence of monkeypox causes considerable healthcare risks needing efficient immunization programs. This work investigates the monkeypox disease dynamics in the UK, focusing on the impact of vaccination under real data. The key difficulty is to correctly predict the spread of the disease and evaluate the success of immunization efforts. We construct a mathematical model for monkeypox infection and extend it to the fractional case considering the Caputo derivative. The analysis ensures the positivity, boundedness, and uniqueness of the solution for the non-integer system. We conduct a local asymptotical stability analysis (LAS) at the disease-free equilibrium (DFE) D, showing the result for R<1. Additionally, we demonstrate the existence of multiple endemic equilibria and provide conditions for backward bifurcation, which are illustrated graphically. Using real case data from the UK, we estimate model parameters via the nonlinear least square method. Our results show that, without vaccination, R≈0.8, whereas vaccination reduces it to R=0.48. We perform sensitivity analysis to identify key parameters influencing disease elimination, presenting the outcomes through graphs. To solve numerically the fractional model, we outline a numerical scheme and provide detailed results under various parameter assumptions. Our findings suggest that high vaccine efficacy, a low waning rate of the vaccines, and increased vaccination of the infected people can significantly reduce the future cases of monkeypox in the UK. The present study offers a comprehensive framework for monkeypox dynamics and informs public health strategies for effective disease control and prevention.
猴痘疫情死灰复燃,给医疗卫生带来巨大风险,需要制定高效的免疫计划。本研究旨在探讨英国猴痘疫情动态,特别关注真实数据下疫苗接种的影响。关键难点在于准确预测疾病传播,评估免疫措施成效。我们构建了猴痘感染的数学模型,并将其扩展至分数阶情形,考虑 Caputo 导数。分析确保了非整数系统解的正定性、有界性和唯一性。我们对无病平衡点 D 进行局部渐近稳定性分析(LAS),得出 R<1 的结果。此外,我们证明了多个地方平衡点的存在,并给出了反向分歧的条件,并用图形进行了说明。使用英国的实际病例数据,我们通过非线性最小二乘法估计模型参数。结果表明,若不接种疫苗,R≈0.8,而接种疫苗可将其降低至 R=0.48。我们进行了敏感性分析,以确定影响疾病消除的关键参数,并通过图形展示结果。为了数值求解分数阶模型,我们提出了一个数值方案,并在各种参数假设下给出了详细结果。研究结果表明,高疫苗效力、疫苗衰减率低以及增加感染人群的疫苗接种量,可显著减少英国未来猴痘病例。本研究为猴痘动力学提供了全面的框架,为有效控制和预防疾病提供了公共卫生策略。