Suppr超能文献

一种基于多尺度社区网络的SEIQR模型,用于评估COVID-19的动态非药物干预措施。

A Multi-SCALE Community Network-Based SEIQR Model to Evaluate the Dynamic NPIs of COVID-19.

作者信息

Liu Cheng-Chieh, Zhao Shengjie, Deng Hao

机构信息

School of Software Engineering, Tongji University, No. 1239, Siping Road, Shanghai 200092, China.

出版信息

Healthcare (Basel). 2023 May 18;11(10):1467. doi: 10.3390/healthcare11101467.

Abstract

Regarding the problem of epidemic outbreak prevention and control, infectious disease dynamics models cannot support urban managers in reducing urban-scale healthcare costs through community-scale control measures, as they usually have difficulty meeting the requirements for simulation at different scales. In this paper, we propose combining contact networks at different spatial scales to study the COVID-19 outbreak in Shanghai from March to July 2022, calculate the initial Rt through the number of cases at the beginning of the outbreak, and evaluate the effectiveness of dynamic non-pharmaceutical interventions (NPIs) adopted at different time periods in Shanghai using our proposed approach. In particular, our proposed contact network is a three-layer multi-scale network that is used to distinguish social interactions occurring in areas of different sizes, as well as to distinguish between intensive and non-intensive population contacts. This susceptible-exposure-infection-quarantine-recovery (SEIQR) epidemic model constructed based on a multi-scale network can more effectively assess the feasibility of small-scale control measures, such as assessing community quarantine measures and mobility restrictions at different moments and phases of an epidemic. Our experimental results show that this model can meet the simulation needs at different scales, and our further discussion and analysis show that the spread of the epidemic in Shanghai from March to July 2022 can be successfully controlled by implementing a strict long-term dynamic NPI strategy.

摘要

关于疫情防控问题,传染病动力学模型无法通过社区层面的控制措施来帮助城市管理者降低城市规模的医疗成本,因为这些模型通常难以满足不同尺度下的模拟要求。在本文中,我们建议结合不同空间尺度的接触网络,以研究2022年3月至7月上海的新冠疫情爆发情况,通过疫情初期的病例数计算初始Rt,并使用我们提出的方法评估上海在不同时间段采取的动态非药物干预措施(NPIs)的有效性。具体而言,我们提出的接触网络是一个三层多尺度网络,用于区分不同规模区域内发生的社会互动,以及区分密集和非密集人群接触。基于多尺度网络构建的这种易感-暴露-感染-隔离-康复(SEIQR)疫情模型,能够更有效地评估小规模控制措施的可行性,例如在疫情的不同时刻和阶段评估社区隔离措施和流动限制。我们的实验结果表明,该模型能够满足不同尺度下的模拟需求,我们进一步的讨论和分析表明,通过实施严格的长期动态非药物干预策略,可以成功控制2022年3月至7月上海的疫情传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e050/10218475/03bd84618821/healthcare-11-01467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验