Fransson Samuel, Tilly David, Strand Robin
Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
Phys Imaging Radiat Oncol. 2022 Jun 3;23:38-42. doi: 10.1016/j.phro.2022.06.001. eCollection 2022 Jul.
Treatments on combined Magnetic Resonance (MR) scanners and Linear Accelerators (Linacs) for radiotherapy, called MR-Linacs, often require daily contouring. Currently, deformable image registration (DIR) algorithms propagate contours from reference scans, however large shape and size changes can be troublesome. Artificial neural network (ANN) based contouring may alleviate this issue, however generally requires large datasets for training. Mitigating the problem of scarcity of data, we propose patient specific networks trained on a single dataset for each patient, for contouring onto the following datasets in an adaptive MR-Linacworkflow.
MR-scans from 17 prostate patients treated on an MR-Linac with contours of Clinical Target Volume (CTV), bladder and rectum were utilized. U-net shaped models were trained based on the image from the first fraction of each patient, and subsequently applied onto the following treatment images. Results were compared with manual contours in terms of the Dice coefficient and Added Path Length (APL). As benchmark, contours propagated through the clinical DIR algorithm were similarly evaluated.
In Dice coefficient the ANN output was 0.92 ± 0.03, 0.93 ± 0.07 and 0.84 ± 0.10 while for DIR 0.95 ± 0.03, 0.93 ± 0.08, 0.88 ± 0.06 for CTV, bladder and rectum respectively. Similarly, APL where 3109 ± 1642, 7250 ± 4234 and 5041 ± 2666 for ANN and 1835 ± 1621, 7236 ± 4287 and 4170 ± 2920 voxels for DIR.
Patient specific ANN models trained on images from the first fraction of a prostate MR-Linac treatment showed similar accuracy when applied to the subsequent fraction images as a clinically implemented DIR method.
用于放射治疗的磁共振(MR)扫描仪与直线加速器(Linac)相结合的治疗设备,即MR-Linac,通常需要每日进行轮廓勾画。目前,可变形图像配准(DIR)算法可从参考扫描图像中传播轮廓,但较大的形状和尺寸变化可能会带来麻烦。基于人工神经网络(ANN)的轮廓勾画或许能缓解这一问题,然而通常需要大量数据集进行训练。为缓解数据稀缺问题,我们提出针对每位患者在单个数据集上训练的特定患者网络,用于在自适应MR-Linac工作流程中对后续数据集进行轮廓勾画。
利用在MR-Linac上接受治疗的17例前列腺癌患者的MR扫描图像,这些图像带有临床靶区(CTV)、膀胱和直肠的轮廓。基于每位患者首次放疗时的图像训练U-net形状的模型,随后将其应用于后续的治疗图像。将结果与手动勾画的轮廓在骰子系数和增加路径长度(APL)方面进行比较。作为基准,对通过临床DIR算法传播的轮廓进行类似评估。
在骰子系数方面,ANN输出对于CTV、膀胱和直肠分别为0.92±0.03、0.93±0.07和0.84±0.10,而DIR分别为0.95±0.03、0.93±0.08、0.88±0.06。同样,APL方面,ANN分别为3109±1642、7250±4234和5041±2666体素,DIR分别为1835±1621、7236±4287和4170±2920体素。
在前列腺MR-Linac治疗首次放疗时的图像上训练的特定患者ANN模型,在应用于后续放疗图像时,与临床实施的DIR方法相比显示出相似的准确性。