Suppr超能文献

大脑优化的人类视觉区域深度神经网络模型学习非层次化的表示。

Brain-optimized deep neural network models of human visual areas learn non-hierarchical representations.

机构信息

Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, 55455, USA.

出版信息

Nat Commun. 2023 Jun 7;14(1):3329. doi: 10.1038/s41467-023-38674-4.

Abstract

Deep neural networks (DNNs) optimized for visual tasks learn representations that align layer depth with the hierarchy of visual areas in the primate brain. One interpretation of this finding is that hierarchical representations are necessary to accurately predict brain activity in the primate visual system. To test this interpretation, we optimized DNNs to directly predict brain activity measured with fMRI in human visual areas V1-V4. We trained a single-branch DNN to predict activity in all four visual areas jointly, and a multi-branch DNN to predict each visual area independently. Although it was possible for the multi-branch DNN to learn hierarchical representations, only the single-branch DNN did so. This result shows that hierarchical representations are not necessary to accurately predict human brain activity in V1-V4, and that DNNs that encode brain-like visual representations may differ widely in their architecture, ranging from strict serial hierarchies to multiple independent branches.

摘要

深度神经网络(DNNs)经过视觉任务的优化,可以学习到与灵长类动物大脑视觉区域层次结构相匹配的表示。对这一发现的一种解释是,分层表示对于准确预测灵长类动物视觉系统中的大脑活动是必要的。为了验证这一解释,我们优化了 DNN,以直接预测人类视觉区域 V1-V4 中用 fMRI 测量的大脑活动。我们训练了一个单分支 DNN 来联合预测所有四个视觉区域的活动,以及一个多分支 DNN 来独立预测每个视觉区域的活动。尽管多分支 DNN 可以学习分层表示,但只有单分支 DNN 可以这样做。这一结果表明,分层表示对于准确预测 V1-V4 中的人类大脑活动并非必要,并且编码类似大脑的视觉表示的 DNN 在其架构上可能存在很大差异,从严格的串行层次结构到多个独立分支。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77bd/10247700/99d260f12ca3/41467_2023_38674_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验