Seeliger K, Ambrogioni L, Güçlütürk Y, van den Bulk L M, Güçlü U, van Gerven M A J
Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
PLoS Comput Biol. 2021 Feb 4;17(2):e1008558. doi: 10.1371/journal.pcbi.1008558. eCollection 2021 Feb.
Neural information flow (NIF) provides a novel approach for system identification in neuroscience. It models the neural computations in multiple brain regions and can be trained end-to-end via stochastic gradient descent from noninvasive data. NIF models represent neural information processing via a network of coupled tensors, each encoding the representation of the sensory input contained in a brain region. The elements of these tensors can be interpreted as cortical columns whose activity encodes the presence of a specific feature in a spatiotemporal location. Each tensor is coupled to the measured data specific to a brain region via low-rank observation models that can be decomposed into the spatial, temporal and feature receptive fields of a localized neuronal population. Both these observation models and the convolutional weights defining the information processing within regions are learned end-to-end by predicting the neural signal during sensory stimulation. We trained a NIF model on the activity of early visual areas using a large-scale fMRI dataset recorded in a single participant. We show that we can recover plausible visual representations and population receptive fields that are consistent with empirical findings.
神经信息流(NIF)为神经科学中的系统识别提供了一种新方法。它对多个脑区的神经计算进行建模,并且可以通过基于无创数据的随机梯度下降进行端到端训练。NIF模型通过耦合张量网络来表示神经信息处理,每个张量编码一个脑区中包含的感觉输入的表示。这些张量的元素可以解释为皮质柱,其活动编码特定特征在时空位置上的存在。每个张量通过低秩观测模型与特定脑区的测量数据耦合,该模型可以分解为局部神经元群体的空间、时间和特征感受野。这些观测模型以及定义区域内信息处理的卷积权重都是通过预测感觉刺激期间的神经信号进行端到端学习的。我们使用在一名参与者中记录的大规模功能磁共振成像(fMRI)数据集,对早期视觉区域的活动训练了一个NIF模型。我们表明,我们可以恢复与实证结果一致的合理视觉表征和群体感受野。