Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute , San Antonio, Texas, USA.
Department of Molecular Immunology and Microbiology, UT Health San Antonio , San Antonio, Texas, USA.
mBio. 2023 Aug 31;14(4):e0083423. doi: 10.1128/mbio.00834-23. Epub 2023 Jun 8.
Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-β, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines. IMPORTANCE Millions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of and SARS-CoV-2. This model will significantly advance respiratory biology research.
肺泡巨噬细胞(AMs)是一种独特的肺驻留细胞,可与空气传播的病原体和环境颗粒物接触。由于从人类供体中获取它们以及在培养过程中它们的表型快速变化,因此,人们对人类 AM(HAM)在肺部疾病中的作用仍知之甚少。因此,迫切需要一种经济有效的方法来生成和/或分化原代细胞成为 HAM 表型,这对于转化和临床研究尤其重要。我们使用肺脂质(即 Infasurf(表面活性剂,天然牛肺表面活性剂)和与肺相关的细胞因子(粒细胞巨噬细胞集落刺激因子、转化生长因子-β和白细胞介素 10)开发了模拟人类肺泡环境的细胞培养条件,促进了血液中获得的单核细胞向 AM 样(AML)表型的转化,并在组织培养中发挥作用。与 HAM 相似,AML 细胞特别容易受到 和严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的感染。这项研究揭示了肺泡空间成分在 HAM 表型和功能的发育和维持中的重要性,并提供了一种易于获得的模型,可用于研究感染和炎症性疾病过程以及治疗和疫苗中的 HAM。
每年有数百万人死于呼吸疾病。下呼吸道气体交换的肺泡在与入侵物作斗争和将组织损伤降至最低之间保持着不稳定的平衡。在此起关键作用的是驻留的 AM。然而,目前还没有容易获得的 HAM 模型,这是一个巨大的科学挑战。在这里,我们提出了一种基于在特定肺成分鸡尾酒中分化血液单核细胞来生成 AML 细胞的新型模型。这种模型是非侵入性的,比进行支气管肺泡灌洗成本低得多,每个供体产生的 AML 细胞比 HAM 多,并且在培养中保留其表型。我们已经将这种模型应用于 早期研究和 SARS-CoV-2。这种模型将极大地推动呼吸生物学研究。