Suppr超能文献

scTIE:利用单细胞时间多模态数据进行基因调控的数据整合与推断

scTIE: data integration and inference of gene regulation using single-cell temporal multimodal data.

作者信息

Lin Yingxin, Wu Tung-Yu, Chen Xi, Wan Sheng, Chao Brian, Xin Jingxue, Yang Jean Y H, Wong Wing H, Wang Y X Rachel

机构信息

School of Mathematics and Statistics, The University of Sydney, NSW, Australia.

Charles Perkins Centre, The University of Sydney, NSW, Australia.

出版信息

bioRxiv. 2023 May 22:2023.05.18.541381. doi: 10.1101/2023.05.18.541381.

Abstract

Single-cell technologies offer unprecedented opportunities to dissect gene regulatory mechanisms in context-specific ways. Although there are computational methods for extracting gene regulatory relationships from scRNA-seq and scATAC-seq data, the data integration problem, essential for accurate cell type identification, has been mostly treated as a standalone challenge. Here we present scTIE, a unified method that integrates temporal multimodal data and infers regulatory relationships predictive of cellular state changes. scTIE uses an autoencoder to embed cells from all time points into a common space using iterative optimal transport, followed by extracting interpretable information to predict cell trajectories. Using a variety of synthetic and real temporal multimodal datasets, we demonstrate scTIE achieves effective data integration while preserving more biological signals than existing methods, particularly in the presence of batch effects and noise. Furthermore, on the exemplar multiome dataset we generated from differentiating mouse embryonic stem cells over time, we demonstrate scTIE captures regulatory elements highly predictive of cell transition probabilities, providing new potentials to understand the regulatory landscape driving developmental processes.

摘要

单细胞技术为以特定背景方式剖析基因调控机制提供了前所未有的机会。尽管存在从单细胞RNA测序(scRNA-seq)和单细胞染色质可及性测序(scATAC-seq)数据中提取基因调控关系的计算方法,但对于准确的细胞类型识别至关重要的数据整合问题,大多被视为一个独立的挑战。在此,我们提出了scTIE,这是一种统一的方法,它整合了时间多模态数据,并推断出预测细胞状态变化的调控关系。scTIE使用自动编码器,通过迭代最优传输将所有时间点的细胞嵌入到一个公共空间,然后提取可解释的信息来预测细胞轨迹。使用各种合成的和真实的时间多模态数据集,我们证明scTIE实现了有效的数据整合,同时比现有方法保留了更多的生物信号,特别是在存在批次效应和噪声的情况下。此外,在我们随时间分化小鼠胚胎干细胞生成的典型多组学数据集上,我们证明scTIE捕获了对细胞转变概率具有高度预测性的调控元件,为理解驱动发育过程的调控格局提供了新的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/795b/10245711/94f4535a688b/nihpp-2023.05.18.541381v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验