Suppr超能文献

通过重新加权源数据来提高基于 CT 的肺炎分类性能。

Improve the performance of CT-based pneumonia classification via source data reweighting.

机构信息

Department of Electrical and Computer Engineering, University of California San Diego, San Diego, USA.

Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.

出版信息

Sci Rep. 2023 Jun 9;13(1):9401. doi: 10.1038/s41598-023-35938-3.

Abstract

Pneumonia is a life-threatening disease. Computer tomography (CT) imaging is broadly used for diagnosing pneumonia. To assist radiologists in accurately and efficiently detecting pneumonia from CT scans, many deep learning methods have been developed. These methods require large amounts of annotated CT scans, which are difficult to obtain due to privacy concerns and high annotation costs. To address this problem, we develop a three-level optimization based method which leverages CT data from a source domain to mitigate the lack of labeled CT scans in a target domain. Our method automatically identifies and downweights low-quality source CT data examples which are noisy or have large domain discrepancy with target data, by minimizing the validation loss of a target model trained on reweighted source data. On a target dataset with 2218 CT scans and a source dataset with 349 CT images, our method achieves an F1 score of 91.8% in detecting pneumonia and an F1 score of 92.4% in detecting other types of pneumonia, which are significantly better than those achieved by state-of-the-art baseline methods.

摘要

肺炎是一种危及生命的疾病。计算机断层扫描(CT)成像被广泛用于诊断肺炎。为了帮助放射科医生从 CT 扫描中准确高效地检测肺炎,已经开发出许多深度学习方法。这些方法需要大量的注释 CT 扫描,但由于隐私问题和注释成本高,这些 CT 扫描很难获得。为了解决这个问题,我们开发了一种基于三级优化的方法,利用来自源域的 CT 数据来减轻目标域中缺乏标记 CT 扫描的问题。我们的方法通过最小化在重新加权源数据上训练的目标模型的验证损失,自动识别和降低低质量源 CT 数据示例的权重,这些示例存在噪声或与目标数据有较大的域差异。在一个包含 2218 个 CT 扫描的目标数据集和一个包含 349 个 CT 图像的源数据集上,我们的方法在检测肺炎方面的 F1 得分为 91.8%,在检测其他类型肺炎方面的 F1 得分为 92.4%,明显优于最先进的基线方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c353/10256787/2de79d003591/41598_2023_35938_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验