Kumar Roopini Sathiasai, Sharma Swapnil, Halder Arunima, Gupta Vipin
Manipal Hospitals Pvt. Ltd, Bengaluru, Karnataka, India.
Linkedin Technology Information Pvt. Ltd., Mumbai, Maharashtra, India.
J Hum Reprod Sci. 2023 Jan-Mar;16(1):16-21. doi: 10.4103/jhrs.jhrs_4_23.
Determining the DNA fragmentation index (DFI) by the sperm chromatin dispersion (SCD) test involves manual counting of stained sperms with halo and no halo.
The aim of this study is to build a robust artificial intelligence-based solution to predict the DFI.
This is a retrospective experimental study conducted in a secondary fertilisation setup.
We obtained 24,415 images from 30 patients after the SCD test using a phase-contrast microscope. We classified the dataset into two, binary (halo/no halo) and multiclass (big/medium/small halo/degraded (DEG)/dust). Our approach consists of a training and prediction phase. The 30 patients' images were divided into training (24) and prediction (6) sets. A pre-processing method was developed to automatically segment the images to detect sperm-like regions and was annotated by three embryologists.
To interpret the findings, the precision-recall curve and F1 score were utilised.
Binary and multiclass datasets containing 8887 and 15,528 cropped sperm image regions showed an accuracy of 80.15% versus 75.25%. A precision-recall curve was determined and the binary and multiclass datasets obtained an F1 score of 0.81 versus 0.72. A confusion matrix was applied for predicted and actuals for the multiclass approach where small halo and medium halo confusion were found to be highest.
Our proposed machine learning model can standardise and aid in arriving at accurate results without using expensive software. It provides accurate information about healthy and DEG sperms in a given sample, thereby attaining better clinical outcomes. The binary approach performed better with our model than the multiclass approach. However, the multiclass approach can highlight the distribution of fragmented and non-fragmented sperms.
通过精子染色质扩散(SCD)试验测定DNA碎片化指数(DFI),需要人工计数有晕圈和无晕圈的染色精子。
本研究旨在构建一种强大的基于人工智能的解决方案来预测DFI。
这是一项在二级受精机构中进行的回顾性实验研究。
我们使用相差显微镜在SCD试验后从30名患者那里获得了24415张图像。我们将数据集分为两类,二元(有晕圈/无晕圈)和多类(大/中/小晕圈/退化(DEG)/尘埃)。我们的方法包括训练和预测阶段。30名患者的图像被分为训练集(24例)和预测集(6例)。开发了一种预处理方法来自动分割图像以检测类似精子的区域,并由三名胚胎学家进行注释。
为了解释研究结果,使用了精确召回曲线和F1分数。
包含8887个和15528个裁剪后精子图像区域的二元和多类数据集的准确率分别为80.15%和75.25%。确定了精确召回曲线,二元和多类数据集的F1分数分别为0.81和0.72。对多类方法的预测结果和实际结果应用了混淆矩阵,发现小晕圈和中晕圈的混淆最为严重。
我们提出的机器学习模型可以在不使用昂贵软件的情况下实现标准化并有助于得出准确结果。它能提供给定样本中健康精子和DEG精子的准确信息,从而获得更好的临床结果。二元方法在我们的模型中比多类方法表现更好。然而,多类方法可以突出碎片化和非碎片化精子的分布。