University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TG, UK.
IT-University of Copenhagen, Rued Langgaards Vej 7, 2300, Copenhagen, Denmark.
BMC Bioinformatics. 2023 Jun 12;24(1):247. doi: 10.1186/s12859-023-05366-1.
Simulating DNA evolution has been done through coevolution-agnostic probabilistic frameworks for the past 3 decades. The most common implementation is by using the converse of the probabilistic approach used to infer phylogenies which, in the simplest form, simulates a single sequence at a time. However, biological systems are multi-genic, and gene products can affect each other's evolutionary paths through coevolution. These crucial evolutionary dynamics still remain to be simulated, and we believe that modelling them can lead to profound insights for comparative genomics.
Here we present CastNet, a genome evolution simulator that assumes each genome is a collection of genes with constantly evolving regulatory interactions in between them. The regulatory interactions produce a phenotype in the form of gene expression profiles, upon which fitness is calculated. A genetic algorithm is then used to evolve a population of such entities through a user-defined phylogeny. Importantly, the regulatory mutations are a response to sequence mutations, thus making a 1-1 relationship between the rate of evolution of sequences and of regulatory parameters. This is, to our knowledge, the first time the evolution of sequences and regulation have been explicitly linked in a simulation, despite there being a multitude of sequence evolution simulators, and a handful of models to simulate Gene Regulatory Network (GRN) evolution. In our test runs, we see a coevolutionary signal among genes that are active in the GRN, and neutral evolution in genes that are not included in the network, showing that selective pressures imposed on the regulatory output of the genes are reflected in their sequences.
We believe that CastNet represents a substantial step for developing new tools to study genome evolution, and more broadly, coevolutionary webs and complex evolving systems. This simulator also provides a new framework to study molecular evolution where sequence coevolution has a leading role.
在过去的 30 年中,通过共进化无关的概率框架模拟 DNA 进化已经成为一种常见的方法。最常见的实现方式是使用推断系统发育的概率方法的逆方法,该方法最简单的形式是一次模拟一个序列。然而,生物系统是多基因的,基因产物可以通过共进化相互影响彼此的进化路径。这些关键的进化动态仍然需要被模拟,我们相信对它们进行建模可以为比较基因组学带来深刻的见解。
在这里,我们提出了 CastNet,这是一种基因组进化模拟器,它假设每个基因组都是一组基因,这些基因之间存在不断进化的调控相互作用。这些调控相互作用以基因表达谱的形式产生表型,然后根据表型计算适应性。然后,使用遗传算法通过用户定义的系统发育来进化这样的实体群体。重要的是,调控突变是对序列突变的反应,因此序列和调控参数的进化速率之间存在一一对应关系。据我们所知,这是第一次在模拟中明确地将序列和调控的进化联系起来,尽管有许多序列进化模拟器,以及少数用于模拟基因调控网络(GRN)进化的模型。在我们的测试运行中,我们看到了在 GRN 中活跃的基因之间存在共进化信号,而不在网络中的基因则表现出中性进化,这表明施加在基因调控输出上的选择压力反映在它们的序列中。
我们相信 CastNet 代表了开发新工具来研究基因组进化的重要一步,更广泛地说,代表了研究共进化网络和复杂进化系统的重要一步。这个模拟器还提供了一个新的框架来研究分子进化,其中序列共进化起着主导作用。