Suppr超能文献

深度学习在胰腺肿瘤检测中的诊断能力。

Diagnostic ability of deep learning in detection of pancreatic tumour.

机构信息

Department of Computer Science and Engineering, EASA College of Engineering and Technology, Coimbatore, India.

Singidunum University, Belgrade, Serbia.

出版信息

Sci Rep. 2023 Jun 15;13(1):9725. doi: 10.1038/s41598-023-36886-8.

Abstract

Pancreatic cancer is associated with higher mortality rates due to insufficient diagnosis techniques, often diagnosed at an advanced stage when effective treatment is no longer possible. Therefore, automated systems that can detect cancer early are crucial to improve diagnosis and treatment outcomes. In the medical field, several algorithms have been put into use. Valid and interpretable data are essential for effective diagnosis and therapy. There is much room for cutting-edge computer systems to develop. The main objective of this research is to predict pancreatic cancer early using deep learning and metaheuristic techniques. This research aims to create a deep learning and metaheuristic techniques-based system to predict pancreatic cancer early by analyzing medical imaging data, mainly CT scans, and identifying vital features and cancerous growths in the pancreas using Convolutional Neural Network (CNN) and YOLO model-based CNN (YCNN) models. Once diagnosed, the disease cannot be effectively treated, and its progression is unpredictable. That's why there's been a push in recent years to implement fully automated systems that can sense cancer at a prior stage and improve diagnosis and treatment. The paper aims to evaluate the effectiveness of the novel YCNN approach compared to other modern methods in predicting pancreatic cancer. To predict the vital features from the CT scan and the proportion of cancer feasts in the pancreas using the threshold parameters booked as markers. This paper employs a deep learning approach called a Convolutional Neural network (CNN) model to predict pancreatic cancer images. In addition, we use the YOLO model-based CNN (YCNN) to aid in the categorization process. Both biomarkers and CT image dataset is used for testing. The YCNN method was shown to perform well by a cent percent of accuracy compared to other modern techniques in a thorough review of comparative findings.

摘要

胰腺癌的死亡率较高,原因是诊断技术不足,通常在癌症发展到晚期时才被诊断出来,此时已经无法进行有效治疗。因此,能够早期发现癌症的自动化系统对于改善诊断和治疗结果至关重要。在医学领域,已经有几种算法投入使用。有效的和可解释的数据对于有效的诊断和治疗是必不可少的。有很大的空间可以让前沿的计算机系统得到发展。本研究的主要目的是使用深度学习和启发式技术早期预测胰腺癌。本研究旨在通过分析医学成像数据,主要是 CT 扫描,创建一个基于深度学习和启发式技术的系统,使用卷积神经网络 (CNN) 和基于 YOLO 模型的 CNN (YCNN) 模型来预测早期胰腺癌,识别胰腺中的重要特征和癌性生长。一旦被诊断出来,这种疾病就无法有效治疗,而且其进展是不可预测的。这就是为什么近年来人们一直在推动实施能够在早期感知癌症的全自动系统,以改善诊断和治疗效果。本文旨在评估新型 YCNN 方法与其他现代方法在预测胰腺癌方面的有效性。使用预定的阈值参数作为标记,从 CT 扫描中预测重要特征和胰腺中癌症的比例。本文采用了一种称为卷积神经网络(CNN)的深度学习方法来预测胰腺癌图像。此外,我们还使用了基于 YOLO 模型的 CNN(YCNN)来辅助分类过程。两种生物标志物和 CT 图像数据集都用于测试。在全面审查比较结果后,YCNN 方法的准确率达到了 100%,相比其他现代技术表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/10272117/7da8bcceeaa3/41598_2023_36886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验