Suppr超能文献

利用机器学习识别易增重的青年成年人。

Identifying Young Adults at High Risk for Weight Gain Using Machine Learning.

机构信息

Department of Surgery, University of Wisconsin, Madison, Wisconsin.

Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin.

出版信息

J Surg Res. 2023 Nov;291:7-16. doi: 10.1016/j.jss.2023.05.015. Epub 2023 Jun 15.

Abstract

INTRODUCTION

Weight gain among young adults continues to increase. Identifying adults at high risk for weight gain and intervening before they gain weight could have a major public health impact. Our objective was to develop and test electronic health record-based machine learning models to predict weight gain in young adults with overweight/class 1 obesity.

METHODS

Seven machine learning models were assessed, including three regression models, random forest, single-layer neural network, gradient-boosted decision trees, and support vector machine (SVM) models. Four categories of predictors were included: 1) demographics; 2) obesity-related health conditions; 3) laboratory data and vital signs; and 4) neighborhood-level variables. The cohort was split 60:40 for model training and validation. Area under the receiver operating characteristic curves (AUC) were calculated to determine model accuracy at predicting high-risk individuals, defined by ≥ 10% total body weight gain within 2 y. Variable importance was measured via generalized analysis of variance procedures.

RESULTS

Of the 24,183 patients (mean [SD] age, 32.0 [6.3] y; 55.1% females) in the study, 14.2% gained ≥10% total body weight. Area under the receiver operating characteristic curves varied from 0.557 (SVM) to 0.675 (gradient-boosted decision trees). Age, sex, and baseline body mass index were the most important predictors among the models except SVM and neural network.

CONCLUSIONS

Our machine learning models performed similarly and had modest accuracy for identifying young adults at risk of weight gain. Future models may need to incorporate behavioral and/or genetic information to enhance model accuracy.

摘要

简介

年轻人的体重增加仍在持续。识别有体重增加风险的成年人,并在他们体重增加之前进行干预,可能会对公众健康产生重大影响。我们的目的是开发和测试基于电子健康记录的机器学习模型,以预测超重/1 类肥胖的年轻成年人的体重增加。

方法

评估了七种机器学习模型,包括三种回归模型、随机森林、单层神经网络、梯度提升决策树和支持向量机(SVM)模型。纳入了四类预测因子:1)人口统计学;2)肥胖相关健康状况;3)实验室数据和生命体征;4)社区级别的变量。队列被分为 60:40 用于模型训练和验证。计算了接收者操作特征曲线下的面积(AUC),以确定模型预测高危个体的准确性,高危个体定义为在 2 年内体重增加≥10%。通过广义方差分析程序测量变量的重要性。

结果

在研究的 24183 名患者(平均[标准差]年龄 32.0[6.3]岁;55.1%为女性)中,14.2%的患者体重增加≥10%。接收者操作特征曲线下的面积从 0.557(SVM)到 0.675(梯度提升决策树)不等。年龄、性别和基线体重指数是除 SVM 和神经网络之外的模型中最重要的预测因子。

结论

我们的机器学习模型表现相似,对识别有体重增加风险的年轻人的准确性适中。未来的模型可能需要纳入行为和/或遗传信息以提高模型的准确性。

相似文献

1
Identifying Young Adults at High Risk for Weight Gain Using Machine Learning.
J Surg Res. 2023 Nov;291:7-16. doi: 10.1016/j.jss.2023.05.015. Epub 2023 Jun 15.
2
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
3
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
BMC Public Health. 2024 Jun 28;24(1):1728. doi: 10.1186/s12889-024-19196-0.
4
Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.
PLoS Med. 2018 Nov 20;15(11):e1002695. doi: 10.1371/journal.pmed.1002695. eCollection 2018 Nov.
5
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Apr;36(4):345-352. doi: 10.3760/cma.j.cn121430-20230930-00832.
7
Using machine learning models to predict falls in hospitalised adults.
Int J Med Inform. 2024 Jul;187:105436. doi: 10.1016/j.ijmedinf.2024.105436. Epub 2024 Mar 23.
10
Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model.
Spine J. 2024 Feb;24(2):239-249. doi: 10.1016/j.spinee.2023.09.029. Epub 2023 Oct 20.

引用本文的文献

1
Using Machine Learning to Predict Weight Gain in Adults: an Observational Analysis From the All of Us Research Program.
J Surg Res. 2025 Feb;306:43-53. doi: 10.1016/j.jss.2024.11.042. Epub 2024 Dec 31.
2
Deep Learning-Based Obesity Identification System for Young Adults Using Smartphone Inertial Measurements.
Int J Environ Res Public Health. 2024 Sep 4;21(9):1178. doi: 10.3390/ijerph21091178.

本文引用的文献

1
Electronic health record machine learning model predicts trauma inpatient mortality in real time: A validation study.
J Trauma Acute Care Surg. 2022 Jan 1;92(1):74-80. doi: 10.1097/TA.0000000000003431.
2
Obesity and BMI Cut Points for Associated Comorbidities: Electronic Health Record Study.
J Med Internet Res. 2021 Aug 9;23(8):e24017. doi: 10.2196/24017.
3
Association Between Medicaid Status, Social Determinants of Health, and Bariatric Surgery Outcomes.
Ann Surg Open. 2021 Jan 7;2(1):e028. doi: 10.1097/AS9.0000000000000028. eCollection 2021 Mar.
4
Direct medical costs of obesity in the United States and the most populous states.
J Manag Care Spec Pharm. 2021 Mar;27(3):354-366. doi: 10.18553/jmcp.2021.20410. Epub 2021 Jan 20.
5
Machine Learning-Guided Adjuvant Treatment of Head and Neck Cancer.
JAMA Netw Open. 2020 Nov 2;3(11):e2025881. doi: 10.1001/jamanetworkopen.2020.25881.
6
Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality.
JAMA Netw Open. 2020 Nov 2;3(11):e2023780. doi: 10.1001/jamanetworkopen.2020.23780.
7
Nonparametric variable importance assessment using machine learning techniques.
Biometrics. 2021 Mar;77(1):9-22. doi: 10.1111/biom.13392. Epub 2020 Dec 8.
8
Internal and External Validation of a Machine Learning Risk Score for Acute Kidney Injury.
JAMA Netw Open. 2020 Aug 3;3(8):e2012892. doi: 10.1001/jamanetworkopen.2020.12892.
9
Early detection of type 2 diabetes mellitus using machine learning-based prediction models.
Sci Rep. 2020 Jul 20;10(1):11981. doi: 10.1038/s41598-020-68771-z.
10
Study of cardiovascular disease prediction model based on random forest in eastern China.
Sci Rep. 2020 Mar 23;10(1):5245. doi: 10.1038/s41598-020-62133-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验