Suppr超能文献

用于评估和筛选可持续航空燃料生产途径的多标准决策分析

Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways.

作者信息

Okolie Jude A, Awotoye Damilola, Tabat Meshach E, Okoye Patrick U, Epelle Emmanuel I, Ogbaga Chukwuma C, Güleç Fatih, Oboirien Bilainu

机构信息

Gallogly College of Engineering, University of Oklahoma, Norman, OK, USA.

Department of Chemical Engineering, University of llorin, Ilorin, Kwara State, Nigeria.

出版信息

iScience. 2023 May 24;26(6):106944. doi: 10.1016/j.isci.2023.106944. eCollection 2023 Jun 16.

Abstract

The aviation sector, a significant greenhouse gas emitter, must lower its emissions to alleviate the climate change impact. Decarbonization can be achieved by converting low-carbon feedstock to sustainable aviation fuel (SAF). This study reviews SAF production pathways like hydroprocessed esters and fatty acids (HEFA), gasification and Fischer-Tropsch Process (GFT), Alcohol to Jet (ATJ), direct sugar to hydrocarbon (DSHC), and fast pyrolysis (FP). Each pathway's advantages, limitations, cost-effectiveness, and environmental impact are detailed, with reaction pathways, feedstock, and catalyst requirements. A multi-criteria decision framework (MCDS) was used to rank the most promising SAF production pathways. The results show the performance ranking order as HEFA > DSHC > FP > ATJ > GFT, assuming equal weight for all criteria.

摘要

航空业是主要的温室气体排放源,必须降低其排放量以减轻气候变化影响。通过将低碳原料转化为可持续航空燃料(SAF)可实现脱碳。本研究综述了SAF的生产途径,如加氢处理酯和脂肪酸(HEFA)、气化和费托工艺(GFT)、醇制喷气燃料(ATJ)、直接糖制烃(DSHC)和快速热解(FP)。详细介绍了每种途径的优势、局限性、成本效益和环境影响,以及反应途径、原料和催化剂要求。使用多标准决策框架(MCDS)对最具前景的SAF生产途径进行排名。结果表明,在所有标准权重相等的情况下,性能排名顺序为HEFA > DSHC > FP > ATJ > GFT。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dc0/10276035/bf7c6939eda1/fx1.jpg

相似文献

1
Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways.
iScience. 2023 May 24;26(6):106944. doi: 10.1016/j.isci.2023.106944. eCollection 2023 Jun 16.
2
Civil aviation emissions in Argentina.
Sci Total Environ. 2023 Apr 15;869:161675. doi: 10.1016/j.scitotenv.2023.161675. Epub 2023 Jan 17.
3
Environmental trade-offs of renewable jet fuels in Brazil: Beyond the carbon footprint.
Sci Total Environ. 2020 Apr 20;714:136696. doi: 10.1016/j.scitotenv.2020.136696. Epub 2020 Jan 15.
4
Assessing the particulate matter emission reduction characteristics of small turbofan engine fueled with 100 % HEFA sustainable aviation fuel.
Sci Total Environ. 2024 Oct 1;945:174128. doi: 10.1016/j.scitotenv.2024.174128. Epub 2024 Jun 20.
5
Estimating induced land use change emissions for sustainable aviation biofuel pathways.
Sci Total Environ. 2021 Jul 20;779:146238. doi: 10.1016/j.scitotenv.2021.146238. Epub 2021 Mar 5.
6
Techno-economic and resource analysis of hydroprocessed renewable jet fuel.
Biotechnol Biofuels. 2017 Nov 9;10:261. doi: 10.1186/s13068-017-0945-3. eCollection 2017.
7
[Development of bio-jet fuel production technology: a review].
Sheng Wu Gong Cheng Xue Bao. 2022 Jul 25;38(7):2477-2488. doi: 10.13345/j.cjb.210934.
8
Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2023008118.
9
Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
Environ Sci Technol. 2021 Jun 1;55(11):7561-7570. doi: 10.1021/acs.est.0c06141. Epub 2021 May 17.
10
Life-cycle analysis of bio-based aviation fuels.
Bioresour Technol. 2013 Dec;150:447-56. doi: 10.1016/j.biortech.2013.07.153. Epub 2013 Aug 7.

引用本文的文献

1
Trends and emerging research directions of sustainable aviation: A bibliometric analysis.
Heliyon. 2024 Jun 3;10(11):e32306. doi: 10.1016/j.heliyon.2024.e32306. eCollection 2024 Jun 15.

本文引用的文献

1
Unprecedented Impacts of Aviation Emissions on Global Environmental and Climate Change Scenario.
Curr Pollut Rep. 2021;7(4):549-564. doi: 10.1007/s40726-021-00206-3. Epub 2021 Nov 10.
2
The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.
Atmos Environ (1994). 2021 Jan 1;244:117834. doi: 10.1016/j.atmosenv.2020.117834. Epub 2020 Sep 3.
3
Aviation and global climate change in the 21st century.
Atmos Environ (1994). 2009 Jul;43(22):3520-3537. doi: 10.1016/j.atmosenv.2009.04.024. Epub 2009 Apr 19.
5
Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics.
Bioresour Technol. 2020 Feb;297:122411. doi: 10.1016/j.biortech.2019.122411. Epub 2019 Nov 13.
6
Life Cycle Greenhouse Gas Emissions and Costs of Production of Diesel and Jet Fuel from Municipal Solid Waste.
Environ Sci Technol. 2018 Nov 6;52(21):12055-12065. doi: 10.1021/acs.est.7b04277. Epub 2018 Oct 17.
7
The Alcohol-to-Jet Conversion Pathway for Drop-In Biofuels: Techno-Economic Evaluation.
ChemSusChem. 2018 Nov 9;11(21):3728-3741. doi: 10.1002/cssc.201801690. Epub 2018 Oct 26.
8
Techno-economic and resource analysis of hydroprocessed renewable jet fuel.
Biotechnol Biofuels. 2017 Nov 9;10:261. doi: 10.1186/s13068-017-0945-3. eCollection 2017.
9
Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.
Biotechnol Biofuels. 2017 Mar 14;10:64. doi: 10.1186/s13068-017-0739-7. eCollection 2017.
10
Stochastic techno-economic analysis of alcohol-to-jet fuel production.
Biotechnol Biofuels. 2017 Jan 19;10:18. doi: 10.1186/s13068-017-0702-7. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验