Suppr超能文献

无阶共区域化面数据模型及其在多病种制图中的应用

Order-free co-regionalized areal data models with application to multiple-disease mapping.

作者信息

Jin Xiaoping, Banerjee Sudipto, Carlin Bradley P

机构信息

University of Minnesota, Minneapolis, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2007 Nov 1;69(5):817-838. doi: 10.1111/j.1467-9868.2007.00612.x.

Abstract

With the ready availability of spatial databases and geographical information system software, statisticians are increasingly encountering multivariate modelling settings featuring associations of more than one type: spatial associations between data locations and associations between the variables within the locations. Although flexible modelling of multivariate point-referenced data has recently been addressed by using a linear model of co-regionalization, existing methods for multivariate areal data typically suffer from unnecessary restrictions on the covariance structure or undesirable dependence on the conditioning order of the variables. We propose a class of Bayesian hierarchical models for multivariate areal data that avoids these restrictions, permitting flexible and order-free modelling of correlations both between variables and across areal units. Our framework encompasses a rich class of multivariate conditionally autoregressive models that are computationally feasible via modern Markov chain Monte Carlo methods. We illustrate the strengths of our approach over existing models by using simulation studies and also offer a real data application involving annual lung, larynx and oesophageal cancer death-rates in Minnesota counties between 1990 and 2000.

摘要

随着空间数据库和地理信息系统软件的随时可用,统计学家越来越多地遇到具有多种关联类型的多元建模设置:数据位置之间的空间关联以及位置内变量之间的关联。尽管最近通过使用协同区域化线性模型解决了多元点参考数据的灵活建模问题,但现有的多元面元数据方法通常存在对协方差结构的不必要限制或对变量条件顺序的不良依赖。我们提出了一类用于多元面元数据的贝叶斯层次模型,该模型避免了这些限制,允许对变量之间以及区域单元之间的相关性进行灵活且无顺序的建模。我们的框架包含了一类丰富的多元条件自回归模型,通过现代马尔可夫链蒙特卡罗方法在计算上是可行的。我们通过模拟研究说明了我们的方法相对于现有模型的优势,并提供了一个涉及1990年至2000年明尼苏达州县年度肺癌、喉癌和食管癌死亡率的实际数据应用。

相似文献

1
Order-free co-regionalized areal data models with application to multiple-disease mapping.
J R Stat Soc Series B Stat Methodol. 2007 Nov 1;69(5):817-838. doi: 10.1111/j.1467-9868.2007.00612.x.
2
Generalized hierarchical multivariate CAR models for areal data.
Biometrics. 2005 Dec;61(4):950-61. doi: 10.1111/j.1541-0420.2005.00359.x.
3
Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.
Stat Methods Med Res. 2016 Aug;25(4):1118-44. doi: 10.1177/0962280216660419.
4
Spatial Data Analysis.
Annu Rev Public Health. 2016;37:47-60. doi: 10.1146/annurev-publhealth-032315-021711. Epub 2016 Jan 20.
5
Mining Boundary Effects in Areally Referenced Spatial Data Using the Bayesian Information Criterion.
Geoinformatica. 2011 Jul;15(3):435-454. doi: 10.1007/s10707-010-0109-0.
7
A Bayesian latent process spatiotemporal regression model for areal count data.
Spat Spatiotemporal Epidemiol. 2018 Jun;25:25-37. doi: 10.1016/j.sste.2018.01.003. Epub 2018 Feb 2.
8
Hierarchical multivariate directed acyclic graph autoregressive models for spatial diseases mapping.
Stat Med. 2022 Jul 20;41(16):3057-3075. doi: 10.1002/sim.9404. Epub 2022 Apr 6.
9
A multivariate spatial mixture model for areal data: examining regional differences in standardized test scores.
J R Stat Soc Ser C Appl Stat. 2014 Nov;63(5):737-761. doi: 10.1111/rssc.12061.

引用本文的文献

1
Multivariate varying coefficient spatiotemporal model.
Stat Biosci. 2024 Dec;16(3):761-786. doi: 10.1007/s12561-024-09419-8. Epub 2024 Feb 21.
2
Graph-constrained Analysis for Multivariate Functional Data.
J Multivar Anal. 2025 May;207. doi: 10.1016/j.jmva.2025.105428. Epub 2025 Feb 24.
3
Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease.
Lifetime Data Anal. 2024 Oct;30(4):827-852. doi: 10.1007/s10985-024-09635-w. Epub 2024 Oct 4.
4
Multivariate Poisson cokriging: A geostatistical model for health count data.
Stat Methods Med Res. 2024 Sep;33(9):1637-1659. doi: 10.1177/09622802241268488. Epub 2024 Aug 14.
5
Joint Bayesian longitudinal models for mixed outcome types and associated model selection techniques.
Comput Stat. 2023 Dec;38(4):1735-1769. doi: 10.1007/s00180-022-01280-x. Epub 2022 Sep 18.
6
Modeling Multivariate Spatial Dependencies Using Graphical Models.
N Engl J Stat Data Sci. 2023 Sep;1(2):283-295. doi: 10.51387/23-nejsds47. Epub 2023 Sep 6.
8
A multivariate spatio-temporal model for the incidence of imported COVID-19 cases and COVID-19 deaths in Cuba.
Spat Spatiotemporal Epidemiol. 2023 Jun;45:100588. doi: 10.1016/j.sste.2023.100588. Epub 2023 May 10.
9
Revisiting Gaussian Markov random fields and Bayesian disease mapping.
Stat Methods Med Res. 2023 Jan;32(1):207-225. doi: 10.1177/09622802221129040. Epub 2022 Nov 1.
10
A joint hierarchical model for the number of cases and deaths due to COVID-19 across the boroughs of Montreal.
Spat Spatiotemporal Epidemiol. 2022 Aug;42:100518. doi: 10.1016/j.sste.2022.100518. Epub 2022 May 23.

本文引用的文献

1
Generalized hierarchical multivariate CAR models for areal data.
Biometrics. 2005 Dec;61(4):950-61. doi: 10.1111/j.1541-0420.2005.00359.x.
2
Towards joint disease mapping.
Stat Methods Med Res. 2005 Feb;14(1):61-82. doi: 10.1191/0962280205sm389oa.
3
Proper multivariate conditional autoregressive models for spatial data analysis.
Biostatistics. 2003 Jan;4(1):11-25. doi: 10.1093/biostatistics/4.1.11.
4
Hierarchical Bayesian spatial modelling of small-area rates of non-rare disease.
Stat Med. 2003 May 30;22(10):1761-73. doi: 10.1002/sim.1463.
5
Bayesian modelling of inseparable space-time variation in disease risk.
Stat Med. 2000;19(17-18):2555-67. doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验