Department of Chemistry, Korea University, Seoul 02841, Korea.
Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
Chem Soc Rev. 2023 Jul 3;52(13):4488-4514. doi: 10.1039/d2cs00840h.
One-dimensional (1-D) nanomaterials possess unique shape-dependent phyicochemical properties and are increasingly recognized as promising materials for nanotechnology. 1-D nanomaterials can be classified according to their shape, such as nanorods, nanotubes, nanowires, self-assembled nanochains, , and have been applied in electronics, photonics, and catalysis. The biological characteristics of 1-D nanomaterials, including high drug loading efficiency, prolonged blood circulation, the ability to capture cancer cells, unique cellular uptake mechanisms, efficient photothermal conversion, and material tunability, have aided in extending their potential to biomedical applications, particularly in cancer therapy and diagnosis. This review highlights a novel perspective on emerging 1-D nanomaterials for cancer therapy and diagnosis by introducing the definition of 1-D nanomaterials, their shape-dependent physicochemical properties, biomedical applications, and recent advances in cancer therapy and diagnosis. This review also proposes unexplored potential nanomaterial types and therapeutic applications for 1-D nanomaterials. In particular, the most significant and exciting advances in recent years, including ultrasound-enabled sonodynamic therapy, magnetic field-based therapy, and bioresponsive 1-D nanomaterials for intracellular self-assembly , are discussed along with novel therapeutic concepts, such as piezoelectric 1-D nanomaterials, nanozyme-based nanomedicine, and others.
一维(1-D)纳米材料具有独特的形状依赖性物理化学特性,越来越被认为是纳米技术中有前途的材料。1-D 纳米材料可以根据其形状进行分类,例如纳米棒、纳米管、纳米线、自组装纳米链等,并已应用于电子学、光子学和催化领域。1-D 纳米材料的生物学特性,包括高药物负载效率、延长血液循环时间、捕获癌细胞的能力、独特的细胞摄取机制、高效的光热转换和材料可调性,有助于将其应用潜力扩展到生物医学领域,特别是在癌症治疗和诊断方面。
本综述通过介绍 1-D 纳米材料的定义、形状依赖性物理化学性质、生物医学应用以及癌症治疗和诊断方面的最新进展,突出了新兴 1-D 纳米材料在癌症治疗和诊断方面的新视角。本综述还提出了 1-D 纳米材料未被探索的潜在纳米材料类型和治疗应用。
特别是,讨论了近年来最显著和令人兴奋的进展,包括超声增强的声动力学治疗、基于磁场的治疗以及用于细胞内自组装的响应性 1-D 纳米材料,以及新颖的治疗概念,如压电 1-D 纳米材料、基于纳米酶的纳米医学等。