Suppr超能文献

借鉴魁北克和安大略省在 COVID-19 背景下应对难民、寻求庇护者和无身份移民需求的跨部门举措:一项定性多案例研究方案。

Learning from intersectoral initiatives to respond to the needs of refugees, asylum seekers, and migrants without status in the context of COVID-19 in Quebec and Ontario: a qualitative multiple case study protocol.

机构信息

School of Public Health, University of Montreal, Suite 3076, 7101 Av du Parc, Montreal, QC, H3N 1X9, Canada.

Centre de recherche en Santé Publique (CReSP), University of Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montréal, Canada.

出版信息

Health Res Policy Syst. 2023 Jun 20;21(1):59. doi: 10.1186/s12961-023-00991-x.

Abstract

BACKGROUND

Refugees, asylum seekers, and migrants without status experience precarious living and working conditions that disproportionately expose them to coronavirus disease 2019 (COVID-19). In the two most populous Canadian provinces (Quebec and Ontario), to reduce the vulnerability factors experienced by the most marginalized migrants, the public and community sectors engage in joint coordination efforts called intersectoral collaboration. This collaboration ensures holistic care provisioning, inclusive of psychosocial support, assistance to address food security, and educational and employment assistance. This research project explores how community and public sectors collaborated on intersectoral initiatives during the COVID-19 pandemic to support refugees, asylum seekers, and migrants without status in the cities of Montreal, Sherbrooke, and Toronto, and generates lessons for a sustainable response to the heterogeneous needs of these migrants.

METHODS

This theory-informed participatory research is co-created with socioculturally diverse research partners (refugees, asylum seekers and migrants without status, employees of community organizations, and employees of public organizations). We will utilize Mirzoev and Kane's framework on health systems' responsiveness to guide the four phases of a qualitative multiple case study (a case being an intersectoral initiative). These phases will include (1) building an inventory of intersectoral initiatives developed during the pandemic, (2) organizing a deliberative workshop with representatives of the study population, community, and public sector respondents to select and validate the intersectoral initiatives, (3) interviews (n = 80) with community and public sector frontline workers and managers, municipal/regional/provincial policymakers, and employees of philanthropic foundations, and (4) focus groups (n = 80) with refugees, asylum seekers, and migrants without status. Qualitative data will be analyzed using thematic analysis. The findings will be used to develop discussion forums to spur cross-learning among service providers.

DISCUSSION

This research will highlight the experiences of community and public organizations in their ability to offer responsive services for refugees, asylum seekers, and migrants without status in the context of a pandemic. We will draw lessons learnt from the promising practices developed in the context of COVID-19, to improve services beyond times of crisis. Lastly, we will reflect upon our participatory approach-particularly in relation to the engagement of refugees and asylum seekers in the governance of our research.

摘要

背景

难民、寻求庇护者和无身份移民的生活和工作条件不稳定,这使他们更容易感染 2019 年冠状病毒病(COVID-19)。在加拿大两个人口最多的省份(魁北克省和安大略省),为了减少最边缘化移民所经历的脆弱因素,公共和社区部门共同开展了被称为部门间协作的联合协调努力。这种协作确保提供全面的护理,包括社会心理支持、解决粮食安全问题的援助,以及教育和就业援助。本研究项目探讨了社区和公共部门如何在 COVID-19 大流行期间就部门间倡议进行合作,以支持蒙特利尔、舍布鲁克和多伦多市的难民、寻求庇护者和无身份移民,并为满足这些移民的多样化需求提供可持续的应对措施。

方法

这项理论导向的参与式研究是与社会文化多样化的研究伙伴(难民、寻求庇护者和无身份移民、社区组织的员工和公共组织的员工)共同创建的。我们将利用 Mirzoev 和 Kane 关于卫生系统对响应能力的框架来指导定性多案例研究的四个阶段(一个案例即一个部门间倡议)。这些阶段将包括:(1) 编制大流行期间制定的部门间倡议清单;(2) 组织一次有研究人群、社区和公共部门代表参加的协商性研讨会,以选择和验证部门间倡议;(3) 对社区和公共部门一线工作人员和管理人员、市/地区/省级政策制定者以及慈善基金会的员工进行访谈(n=80);(4) 对难民、寻求庇护者和无身份移民进行焦点小组讨论(n=80)。将使用主题分析对定性数据进行分析。研究结果将用于开发讨论论坛,以促进服务提供者之间的交叉学习。

讨论

本研究将重点介绍社区和公共组织在大流行背景下为难民、寻求庇护者和无身份移民提供响应性服务的经验。我们将从 COVID-19 背景下制定的有希望的做法中吸取经验教训,以改善危机时期以外的服务。最后,我们将反思我们的参与式方法——特别是在难民和寻求庇护者参与我们研究的治理方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7631/10280952/6bbc4947ac9b/12961_2023_991_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验