Suppr超能文献

预测印度道路意外死亡人数:ARIMA 与指数平滑法的明确比较。

Forecasting road accidental deaths in India: an explicit comparison between ARIMA and exponential smoothing method.

机构信息

Department of Statistics, Utkal University, Bhubaneswar, Odisha, India.

Department of Statistics, Ravenshaw University, Cuttack, Odisha, India.

出版信息

Int J Inj Contr Saf Promot. 2023 Dec;30(4):547-560. doi: 10.1080/17457300.2023.2225168. Epub 2023 Jun 22.

Abstract

The number of deaths due to road accident is increasing day by day and has become an alarming global problem over the decades. India, with her rising motorization is no stranger to this global catastrophe. In this paper two relatively simple yet powerful and versatile techniques for forecasting time series data, autoregressive integrated moving average method (ARIMA) and exponential smoothing method are used to forecast the number of deaths due to road accidents in India from the year 2022-2031. The results based on the two methods are compared and it is found that they are in sync with each other and pre-existing literature. Furthermore, this is a unique attempt to use two time series analysis techniques on the same data and carry out a comparative analysis. The data was collected from the annual report of Ministry of Road Transport and Highways, India (2020) and Accidental Deaths & Suicides in India (ADSI) Report of National Crime Record Bureau (2021). After examining all the probable models, it is observed that ARIMA (2, 2, 2) model and exponential smoothing (M, A, N) model are suitable for the given data. Amongst the two, ARIMA (2, 2, 2) model has a lower AIC and BIC value. Thus, this comes out to be the best model as per our model selection criterion. Further, the study also reveals an upward trend of number of road accidental deaths for the upcoming 10 years in India.

摘要

道路交通事故死亡人数日益增加,几十年来已成为一个令人震惊的全球性问题。印度随着机动车保有量的增加,也未能幸免于这场全球性灾难。在本文中,使用了两种相对简单但强大且多功能的时间序列数据分析技术,自回归综合移动平均法(ARIMA)和指数平滑法,来预测 2022 年至 2031 年印度道路交通事故死亡人数。对两种方法的结果进行了比较,发现它们彼此一致且与现有文献一致。此外,这是首次在同一数据上使用两种时间序列分析技术并进行比较分析。数据来自印度道路运输和公路部的年度报告(2020 年)和国家犯罪记录局的《印度意外死亡和自杀报告》(ADSI)(2021 年)。在检查了所有可能的模型后,观察到 ARIMA(2,2,2)模型和指数平滑(M, A, N)模型适合给定数据。在这两种模型中,ARIMA(2,2,2)模型的 AIC 和 BIC 值较低。因此,根据我们的模型选择标准,这是最佳模型。此外,该研究还揭示了未来 10 年印度道路交通事故死亡人数呈上升趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验