Suppr超能文献

用于探索胃肠道组织转录组的空间单细胞技术。

Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome.

机构信息

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.

Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.

出版信息

Compr Physiol. 2023 Jun 26;13(3):4709-4718. doi: 10.1002/cphy.c210053.

Abstract

In the gastrointestinal (GI) system, like in other organ systems, the histological structure is a key determinant of physiological function. Tissues form multiple layers in the GI tract to perform their specialized functions in secretion, absorption, and motility. Even at the single layer, the heterogeneous cell population performs a diverse range of digestive or regulatory functions. Although many details of such functions at the histological and cell biological levels were revealed by traditional methods such as cell sorting, isolation, and culture, as well as histological methods such as immunostaining and RNA in situ hybridization, recent advances in spatial single-cell technologies could further contribute to our understanding of the molecular makeup of GI histological structures by providing a genome-wide overview of how different genes are expressed across individual cells and tissue layers. The current minireview summarizes recent advances in the spatial transcriptomics field and discusses how such technologies can promote our understanding of GI physiology. © 2023 American Physiological Society. Compr Physiol 13:4709-4718, 2023.

摘要

在胃肠道(GI)系统中,与其他器官系统一样,组织学结构是生理功能的关键决定因素。组织在胃肠道中形成多个层,以执行其在分泌、吸收和运动方面的专门功能。即使在单层中,异质细胞群体也执行着多种多样的消化或调节功能。尽管传统方法,如细胞分选、分离和培养,以及免疫染色和 RNA 原位杂交等组织学方法,揭示了这些在组织学和细胞生物学水平上的许多细节,但空间单细胞技术的最新进展可以通过提供对单个细胞和组织层中不同基因表达的全基因组概述,进一步促进我们对 GI 组织学结构的分子构成的理解。本综述总结了空间转录组学领域的最新进展,并讨论了这些技术如何促进我们对 GI 生理学的理解。© 2023 美国生理学会。综合生理学 13:4709-4718, 2023.

相似文献

1
Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome.
Compr Physiol. 2023 Jun 26;13(3):4709-4718. doi: 10.1002/cphy.c210053.
2
3
Dissecting mammalian reproduction with spatial transcriptomics.
Hum Reprod Update. 2023 Nov 2;29(6):794-810. doi: 10.1093/humupd/dmad017.
4
A versatile tissue-rolling technique for spatial-omics analyses of the entire murine gastrointestinal tract.
Nat Protoc. 2024 Oct;19(10):3085-3137. doi: 10.1038/s41596-024-01001-2. Epub 2024 Jun 21.
5
Is bioengineering a possibility in gastrointestinal disorders?
Expert Rev Gastroenterol Hepatol. 2015;9(12):1463-5. doi: 10.1586/17474124.2015.1103178. Epub 2015 Nov 2.
6
Tissue engineering in the gut: developments in neuromusculature.
Gastroenterology. 2014 Jun;146(7):1614-24. doi: 10.1053/j.gastro.2014.03.044. Epub 2014 Mar 27.
7
Enteral Nutrients and Gastrointestinal Physiology.
J Infus Nurs. 2018 Jan/Feb;41(1):35-42. doi: 10.1097/NAN.0000000000000260.
8
Teaching a changing paradigm in physiology: a historical perspective on gut interstitial cells.
Adv Physiol Educ. 2017 Mar 1;41(1):100-109. doi: 10.1152/advan.00154.2016.
9
Single-Cell RNA Sequencing with Spatial Transcriptomics of Cancer Tissues.
Int J Mol Sci. 2022 Mar 11;23(6):3042. doi: 10.3390/ijms23063042.
10
Computational solutions for spatial transcriptomics.
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.

引用本文的文献

1
Seq-Scope-eXpanded: Spatial Omics Beyond Optical Resolution.
bioRxiv. 2025 Feb 8:2025.02.04.636355. doi: 10.1101/2025.02.04.636355.
3
Scalable segmentation-free analysis of submicron resolution spatial transcriptomics.
bioRxiv. 2023 Nov 7:2023.11.04.565621. doi: 10.1101/2023.11.04.565621.

本文引用的文献

1
Multimodal spatiotemporal phenotyping of human retinal organoid development.
Nat Biotechnol. 2023 Dec;41(12):1765-1775. doi: 10.1038/s41587-023-01747-2. Epub 2023 May 8.
2
High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq.
Nat Biotechnol. 2023 Oct;41(10):1405-1409. doi: 10.1038/s41587-023-01676-0. Epub 2023 Feb 23.
3
Solid-phase capture and profiling of open chromatin by spatial ATAC.
Nat Biotechnol. 2023 Aug;41(8):1085-1088. doi: 10.1038/s41587-022-01603-9. Epub 2023 Jan 5.
4
Integration of whole transcriptome spatial profiling with protein markers.
Nat Biotechnol. 2023 Jun;41(6):788-793. doi: 10.1038/s41587-022-01536-3. Epub 2023 Jan 2.
5
Spatially resolved whole transcriptome profiling in human and mouse tissue using Digital Spatial Profiling.
Genome Res. 2022 Oct;32(10):1892-1905. doi: 10.1101/gr.276206.121. Epub 2022 Sep 13.
8
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.
Cell. 2022 May 12;185(10):1777-1792.e21. doi: 10.1016/j.cell.2022.04.003. Epub 2022 May 4.
9
Spatially informed cell-type deconvolution for spatial transcriptomics.
Nat Biotechnol. 2022 Sep;40(9):1349-1359. doi: 10.1038/s41587-022-01273-7. Epub 2022 May 2.
10
The spatial transcriptomic landscape of the healing mouse intestine following damage.
Nat Commun. 2022 Feb 11;13(1):828. doi: 10.1038/s41467-022-28497-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验