Suppr超能文献

深度学习 MRI 标志物可为鼻咽癌提供风险分层策略。

A deep learning MRI-based signature may provide risk-stratification strategies for nasopharyngeal carcinoma.

机构信息

Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.

Department of Computer Science, Xiamen University, Xiamen, Fujian, China.

出版信息

Eur Arch Otorhinolaryngol. 2023 Nov;280(11):5039-5047. doi: 10.1007/s00405-023-08084-9. Epub 2023 Jun 26.

Abstract

OBJECTIVE

As the prognosis of nasopharyngeal carcinoma (NPC) is influenced by various factors, making it difficult for clinical physicians to predict the outcome, the objective of this study was to develop a deep learning-based signature for risk stratification in NPC patients.

METHODS

A total of 293 patients were enrolled in the study and divided into training, validation, and testing groups with a ratio of 7:1:2. MRI scans and corresponding clinical information were collected, and the 3-year disease-free survival (DFS) was chosen as the endpoint. The Res-Net18 algorithm was used to develop two deep learning (DL) models and another solely based on clinical characteristics developed by multivariate cox analysis. The performance of both models was evaluated using the area under the curve (AUC) and the concordance index (C-index). Discriminative performance was assessed using Kaplan-Meier survival analysis.

RESULTS

The deep learning approach identified DL prognostic models. The MRI-based DL model showed significantly better performance compared to the traditional model solely based on clinical characteristics (AUC: 0.8861 vs 0.745, p = 0.04 and C-index: 0.865 vs 0.727, p = 0.03). The survival analysis showed significant survival differences between the risk groups identified by the MRI-based model.

CONCLUSION

Our study highlights the potential of MRI in predicting the prognosis of NPC through DL algorithm. This approach has the potential to become a novel tool for prognosis prediction and can help physicians to develop more valid treatment strategies in the future.

摘要

目的

由于鼻咽癌(NPC)的预后受多种因素影响,临床医生难以预测其结果,因此本研究旨在开发一种基于深度学习的 NPC 患者风险分层签名。

方法

共纳入 293 例患者,分为训练组、验证组和测试组,比例为 7:1:2。收集 MRI 扫描和相应的临床信息,并选择 3 年无病生存率(DFS)作为终点。使用 Res-Net18 算法开发了两种深度学习(DL)模型,另一种则是基于多变量 Cox 分析的临床特征的 DL 模型。使用曲线下面积(AUC)和一致性指数(C-index)评估两种模型的性能。使用 Kaplan-Meier 生存分析评估判别性能。

结果

深度学习方法确定了基于 MRI 的 DL 预后模型。与仅基于临床特征的传统模型相比,MRI 基于的 DL 模型表现出显著更好的性能(AUC:0.8861 与 0.745,p=0.04 和 C-index:0.865 与 0.727,p=0.03)。生存分析显示,MRI 模型识别的风险组之间存在显著的生存差异。

结论

本研究强调了 MRI 通过深度学习算法预测 NPC 预后的潜力。这种方法有可能成为预后预测的新工具,并有助于医生在未来制定更有效的治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验