Suppr超能文献

探索新冠疫情期间影响共享单车需求的时空因素。

Exploring the spatiotemporal factors affecting bicycle-sharing demand during the COVID-19 pandemic.

作者信息

Hossain Sanjana, Loa Patrick, Ong Felita, Habib Khandker Nurul

机构信息

Department of Civil and Mineral Engineering, University of Toronto, Toronto, M5S1A4 Canada.

Percy Edward Hart Professor in Civil and Mineral Engineering, Data Management Group (DMG), University of Toronto, Toronto, M5S1A4 Canada.

出版信息

Transportation (Amst). 2023 Mar 14:1-36. doi: 10.1007/s11116-023-10378-0.

Abstract

This study investigates the roles of the socio-economic, land use, built environment, and weather factors in shaping up the demand for bicycle-sharing trips during the COVID-19 pandemic in Toronto. It uses "Bike Share Toronto" ridership data of 2019 and 2020 and a two-stage methodology. First, multilevel modelling is used to analyze how the factors affect monthly station-level trip generation during the pandemic compared to pre-pandemic period. Then, a geographically weighted regression analysis is performed to better understand how the relationships vary by communities and regions. The study results indicate that the demand of the service for commuting decreased, and the demand for recreational and maintenance trips increased significantly during the pandemic. In addition, higher-income neighborhoods are found to generate fewer weekday trips, whereas neighbourhoods with more immigrants experienced an increase in bike-share ridership during the pandemic. Moreover, the pandemic trip generation rates are more sensitive to the availability of bicycle facilities within station buffers than pre-pandemic rates. The results also suggest significant spatial heterogeneity in terms of the level of influence of the explanatory factors on the demand for bicycle-sharing during the pandemic. Based on the findings, some neighbourhood-specific policy recommendations are made, which inform decisions regarding the locations and capacity of new stations and the management of existing stations so that equity concerns about the usage of the system are adequately accounted for.

摘要

本研究调查了社会经济、土地利用、建成环境和天气因素在塑造多伦多新冠疫情期间共享单车出行需求方面所起的作用。它使用了2019年和2020年“多伦多共享单车”的乘客数据以及两阶段方法。首先,使用多层模型分析与疫情前时期相比,这些因素如何影响疫情期间每月站点级别的出行生成。然后,进行地理加权回归分析,以更好地了解这些关系如何因社区和地区而异。研究结果表明,疫情期间通勤服务需求下降,而休闲和维护出行需求显著增加。此外,发现高收入社区在工作日的出行较少,而移民较多的社区在疫情期间共享单车乘客量有所增加。此外,疫情期间的出行生成率比疫情前对站点缓冲区自行车设施的可用性更敏感。结果还表明,在疫情期间,解释性因素对共享单车需求的影响程度存在显著的空间异质性。基于这些发现,提出了一些针对特定社区的政策建议,为新站点的选址和容量以及现有站点的管理决策提供参考,以便充分考虑对系统使用的公平性问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3988/10012301/659181705d7a/11116_2023_10378_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验