Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea.
Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, Pohang University of Science and Technology, Nam-gu, Pohang-si 37673, Republic of Korea.
Molecules. 2023 Jun 8;28(12):4645. doi: 10.3390/molecules28124645.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 通过其高毒性、感染力和基因组突变对人类社会造成了破坏,降低了疫苗的效力。在这里,我们报告了针对其刺突蛋白开发的适体,这些适体通过与病毒受体血管紧张素转换酶 2 (ACE2) 相互作用,有效地干扰了病毒感染。为了开发高效的适体并了解它们抑制病毒感染的机制,我们使用低温电子显微镜 (cryo-EM) 确定了适体/受体结合域 (RBD) 复合物的三维 (3D) 结构。此外,我们开发了针对刺突蛋白中 RBD 上两个不同区域的双价适体,这些适体直接与 ACE2 相互作用。一个适体通过阻断 RBD 中的 ACE2 结合位点来干扰 ACE2 的结合,另一个适体通过结合 RBD 的不同表面来变构抑制 ACE2。利用适体-RBD 复合物的 3D 结构,我们对这些适体进行了最小化和优化。通过组合优化后的适体,我们开发了一种双价适体,其对病毒感染的抑制作用强于组成适体。这项研究证实,基于结构的适体设计方法在开发针对 SARS-CoV-2 和其他病毒的抗病毒药物方面具有很高的潜力。