Suppr超能文献

基于机器学习的膀胱癌生活方式和职业风险评估。

Lifestyle and occupational risks assessment of bladder cancer using machine learning-based prediction models.

机构信息

Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.

出版信息

Cancer Rep (Hoboken). 2023 Sep;6(9):e1860. doi: 10.1002/cnr2.1860. Epub 2023 Jul 5.

Abstract

BACKGROUND

Bladder cancer, one of the most prevalent cancers globally, can be regarded as considerable morbidity and mortality for patients. The bladder is an organ that comes in constant exposure to the environment and other risk factors such as inflammation.

AIMS

In the current study, we used machine learning (ML) methods and developed risk prediction models for bladder cancer.

METHODS

This population-based case-control study is focused on 692 cases of bladder cancer and 692 healthy people. The ML, including Neural Network (NN), Random Forest (RF), Decision Tree (DT), Naive Bayes (NB), Gradient Boosting (GB), and Logistic Regression (LR), were applied, and the model performance was evaluated.

RESULTS

The RF (AUC = .86, precision = 79%) had the best performance, and the RT (AUC = .78, precision = 73%) was in the next rank. Based on variable importance analysis in RF, recurrent infection, bladder stone history, neurogenic bladder, smoking and opium use, chronic renal failure, spinal cord paralysis, analgesic, family history of bladder cancer, diabetic mellitus, low dietary intake of fruit and vegetable, high dietary intake of ham, sausage, can and pickles were respectively the most important factors, which effect on the probability of bladder cancer.

CONCLUSION

Machine learning approaches can predict the probability of bladder cancer according to medical history, occupational risk factors, and dietary and demographical characteristics.

摘要

背景

膀胱癌是全球最常见的癌症之一,可导致患者出现较高的发病率和死亡率。膀胱是一个经常暴露于环境和其他风险因素(如炎症)的器官。

目的

本研究使用机器学习(ML)方法开发膀胱癌风险预测模型。

方法

本基于人群的病例对照研究纳入 692 例膀胱癌病例和 692 名健康对照者。应用 ML 方法,包括神经网络(NN)、随机森林(RF)、决策树(DT)、朴素贝叶斯(NB)、梯度提升(GB)和逻辑回归(LR),并评估模型性能。

结果

RF(AUC=0.86,准确率=79%)表现最佳,随机森林(AUC=0.78,准确率=73%)次之。基于 RF 中的变量重要性分析,复发性感染、膀胱结石史、神经源性膀胱、吸烟和鸦片使用、慢性肾衰竭、脊髓麻痹、镇痛药、膀胱癌家族史、糖尿病、水果和蔬菜摄入量低、火腿、香肠、罐头和腌制食品摄入量高分别是对膀胱癌发病概率影响最大的因素。

结论

机器学习方法可根据病史、职业风险因素以及饮食和人口统计学特征预测膀胱癌的发病概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a05/10480417/6a012eb30aad/CNR2-6-e1860-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验