Suppr超能文献

E-GWAS:一种类似集成的 GWAS 策略,在不降低真阳性率的情况下有效控制假阳性率。

E-GWAS: an ensemble-like GWAS strategy that provides effective control over false positive rates without decreasing true positives.

机构信息

Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.

The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.

出版信息

Genet Sel Evol. 2023 Jul 5;55(1):46. doi: 10.1186/s12711-023-00820-3.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) are an effective way to explore genotype-phenotype associations in humans, animals, and plants. Various GWAS methods have been developed based on different genetic or statistical assumptions. However, no single method is optimal for all traits and, for many traits, the putative single nucleotide polymorphisms (SNPs) that are detected by the different methods do not entirely overlap due to the diversity of the genetic architecture of complex traits. Therefore, multi-tool-based GWAS strategies that combine different methods have been increasingly employed. To take this one step further, we propose an ensemble-like GWAS strategy (E-GWAS) that statistically integrates GWAS results from different single GWAS methods.

RESULTS

E-GWAS was compared with various single GWAS methods using simulated phenotype traits with different genetic architectures. E-GWAS performed stably across traits with different genetic architectures and effectively controlled the number of false positive genetic variants detected without decreasing the number of true positive variants. In addition, its performance could be further improved by using a bin-merged strategy and the addition of more distinct single GWAS methods. Our results show that the numbers of true and false positive SNPs detected by the E-GWAS strategy slightly increased and decreased, respectively, with increasing bin size and when the number and the diversity of individual GWAS methods that were integrated in E-GWAS increased, the latter being more effective than the bin-merged strategy. The E-GWAS strategy was also applied to a real dataset to study backfat thickness in a pig population, and 10 candidate genes related to this trait and expressed in adipose-associated tissues were identified.

CONCLUSIONS

Using both simulated and real datasets, we show that E-GWAS is a reliable and robust strategy that effectively integrates the GWAS results of different methods and reduces the number of false positive SNPs without decreasing that of true positive SNPs.

摘要

背景

全基因组关联研究(GWAS)是一种探索人类、动物和植物中基因型-表型关联的有效方法。各种 GWAS 方法都是基于不同的遗传或统计假设而开发的。然而,没有一种方法适用于所有性状,对于许多性状,由于复杂性状遗传结构的多样性,不同方法检测到的假定单核苷酸多态性(SNP)并不完全重叠。因此,越来越多地采用基于多工具的 GWAS 策略,该策略结合了不同的方法。更进一步,我们提出了一种基于集成的 GWAS 策略(E-GWAS),该策略从不同的单 GWAS 方法中统计整合 GWAS 结果。

结果

E-GWAS 与具有不同遗传结构的模拟表型性状的各种单 GWAS 方法进行了比较。E-GWAS 在具有不同遗传结构的性状中表现稳定,有效地控制了检测到的假阳性遗传变异的数量,而不会减少真正阳性的变异数量。此外,通过使用 bin-merged 策略和添加更多不同的单 GWAS 方法,可以进一步提高其性能。我们的结果表明,E-GWAS 策略检测到的真阳性和假阳性 SNP 的数量分别随着 bin 大小的增加而略有增加和减少,并且随着集成到 E-GWAS 中的单个 GWAS 方法的数量和多样性的增加而减少,后者比 bin-merged 策略更有效。E-GWAS 策略还应用于真实数据集,以研究猪群体的背脂厚度,并鉴定出与该性状相关且在脂肪组织中表达的 10 个候选基因。

结论

使用模拟和真实数据集,我们表明 E-GWAS 是一种可靠且稳健的策略,可有效地整合不同方法的 GWAS 结果,减少假阳性 SNP 的数量,而不会减少真正阳性 SNP 的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7fc/10320972/aeb06453c45e/12711_2023_820_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验