Suppr超能文献

COVID-19自动暴露通知

Automated Exposure Notification for COVID-19.

作者信息

Samuels Leo, Boskov Novak, Francisco Oliveira Andreas, Sun Edwin, Starobinski David, Trachtenberg Ari, Monga Manan, Varia Mayank, Canetti Ran, Devaiah Anand, Denis Gerald V

机构信息

Biological Sciences, University of Maryland, College Park, 20742, MD.

Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St, Boston, 02215, MA.

出版信息

J Young Investig. 2022 Dec;25(12). Epub 2022 Dec 20.

Abstract

In the current COVID-19 pandemic, various Automated Exposure Notification (AEN) systems have been proposed to help quickly identify potential contacts of infected individuals. All these systems try to leverage the current understanding of the following factors: transmission risk, technology to address risk modeling, system policies and privacy considerations. While AEN holds promise for mitigating the spread of COVID-19, using short-range communication channels (Bluetooth) in smartphones to detect close individual contacts may be inaccurate for modeling and informing transmission risk. This work finds that the current close contact definitions may be inadequate to reduce viral spread using AEN technology. Consequently, relying on distance measurements from Bluetooth Low-Energy may not be optimal for determining risks of exposure and protecting privacy. This paper's literature analysis suggests that AEN may perform better by using broadly accessible technologies to sense the respiratory activity, mask status, or environment of participants. Moreover, the paper remains cognizant that smartphone sensors can leak private information and thus recommends additional objectives for maintaining user privacy without compromising utility for population health. This literature review and analysis will simultaneously interest (i) health professionals who desire a fundamental understanding of the design and utility of AEN systems and (ii) technologists interested in understanding their epidemiological basis in the light of recent research. Ultimately, the two disparate communities need to understand each other to assess the value of AEN systems in mitigating viral spread, whether for the COVID-19 pandemic or for future ones.

摘要

在当前的新冠疫情中,人们提出了各种自动暴露通知(AEN)系统,以帮助快速识别感染者的潜在接触者。所有这些系统都试图利用对以下因素的现有认识:传播风险、用于风险建模的技术、系统政策和隐私考量。虽然AEN有望减轻新冠病毒的传播,但使用智能手机中的短程通信渠道(蓝牙)来检测密切的个人接触,在建模和告知传播风险方面可能并不准确。这项研究发现,当前的密切接触定义可能不足以利用AEN技术减少病毒传播。因此,依靠蓝牙低功耗技术进行距离测量,可能并非确定暴露风险和保护隐私的最佳方式。本文的文献分析表明,通过使用广泛可用的技术来感知参与者的呼吸活动、口罩佩戴情况或环境,AEN可能会表现得更好。此外,本文也认识到智能手机传感器可能会泄露私人信息,因此建议在不损害对公众健康效用的前提下,设定维护用户隐私的额外目标。这篇文献综述和分析将同时引起两类人的兴趣:(i)希望深入了解AEN系统设计和效用的卫生专业人员;(ii)有兴趣根据最新研究了解其流行病学基础的技术专家。最终,这两个不同的群体需要相互理解,以评估AEN系统在减轻病毒传播方面的价值,无论是针对新冠疫情还是未来的疫情。

相似文献

1
Automated Exposure Notification for COVID-19.COVID-19自动暴露通知
J Young Investig. 2022 Dec;25(12). Epub 2022 Dec 20.
3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4

本文引用的文献

1
The size and culturability of patient-generated SARS-CoV-2 aerosol.患者产生的 SARS-CoV-2 气溶胶的大小和可培养性。
J Expo Sci Environ Epidemiol. 2022 Sep;32(5):706-711. doi: 10.1038/s41370-021-00376-8. Epub 2021 Aug 18.
2
The epidemiological impact of the NHS COVID-19 app.NHS COVID-19 应用程序的流行病学影响。
Nature. 2021 Jun;594(7863):408-412. doi: 10.1038/s41586-021-03606-z. Epub 2021 May 12.
3
A guideline to limit indoor airborne transmission of COVID-19.限制 COVID-19 室内空气传播的指南。
Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2018995118.
7
Face masks considerably reduce COVID-19 cases in Germany.口罩大大减少了德国的 COVID-19 病例。
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32293-32301. doi: 10.1073/pnas.2015954117. Epub 2020 Dec 3.
8
10
Indoor transmission of SARS-CoV-2.室内传播的 SARS-CoV-2。
Indoor Air. 2021 May;31(3):639-645. doi: 10.1111/ina.12766. Epub 2020 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验