Suppr超能文献

整体 4D 方法优化糖组学中微阵列生物传感变异性的内在和外在因素。

A Holistic 4D Approach to Optimize Intrinsic and Extrinsic Factors Contributing to Variability in Microarray Biosensing in Glycomics.

机构信息

Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia.

出版信息

Sensors (Basel). 2023 Jun 6;23(12):5362. doi: 10.3390/s23125362.

Abstract

Protein-carbohydrate interactions happen to be a crucial facet of biology, discharging a myriad of functions. Microarrays have become a premier choice to discern the selectivity, sensitivity and breadth of these interactions in a high-throughput manner. The precise recognition of target glycan ligands among the plethora of others is central for any glycan-targeting probe being tested by microarray analyses. Ever since the introduction of the microarray as an elemental tool for high-throughput glycoprofiling, numerous distinct array platforms possessing different customizations and assemblies have been developed. Accompanying these customizations are various factors ushering variances across array platforms. In this primer, we investigate the influence of various extrinsic factors, namely printing parameters, incubation procedures, analyses and array storage conditions on the protein-carbohydrate interactions and evaluate these factors for the optimal performance of microarray glycomics analysis. We hereby propose a 4D approach (Design-Dispense-Detect-Deduce) to minimize the effect of these extrinsic factors on glycomics microarray analyses and thereby streamline cross-platform analyses and comparisons. This work will aid in optimizing microarray analyses for glycomics, minimize cross-platform disparities and bolster the further development of this technology.

摘要

蛋白质-碳水化合物相互作用恰好是生物学的一个关键方面,发挥着多种功能。微阵列已成为一种主要的选择,可以以高通量的方式辨别这些相互作用的选择性、灵敏度和广度。在微阵列分析中,任何糖基靶向探针的精确识别目标糖配体是至关重要的。自从微阵列作为高通量糖组学分析的基本工具引入以来,已经开发了许多具有不同定制和组装的不同阵列平台。伴随着这些定制,有各种因素在不同的阵列平台之间带来了差异。在本入门中,我们研究了各种外在因素(即打印参数、孵育程序、分析和阵列存储条件)对蛋白质-碳水化合物相互作用的影响,并评估了这些因素对微阵列糖组学分析的最佳性能。我们在此提出了一种 4D 方法(设计-分配-检测-推断)来最小化这些外在因素对糖组学微阵列分析的影响,从而简化跨平台分析和比较。这项工作将有助于优化糖组学的微阵列分析,最小化跨平台差异,并推动该技术的进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/819a/10301416/e089451ed83a/sensors-23-05362-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验