Webb Jeremy M, Meixner Duane D, Adusei Shaheeda A, Polley Eric C, Fatemi Mostafa, Alizad Azra
Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
IEEE Access. 2021;9:5119-5127. doi: 10.1109/access.2020.3045906. Epub 2020 Dec 18.
Medical segmentation is an important but challenging task with applications in standardized report generation, remote medicine and reducing medical exam costs by assisting experts. In this paper, we exploit time sequence information using a novel spatio-temporal recurrent deep learning network to automatically segment the thyroid gland in ultrasound cineclips. We train a DeepLabv3+ based convolutional LSTM model in four stages to perform semantic segmentation by exploiting spatial context from ultrasound cineclips. The backbone DeepLabv3+ model is replicated six times and the output layers are replaced with convolutional LSTM layers in an atrous spatial pyramid pooling configuration. Our proposed model achieves mean intersection over union scores of 0.427 for cysts, 0.533 for nodules and 0.739 for thyroid. We demonstrate the potential application of convolutional LSTM models for thyroid ultrasound segmentation.
医学分割是一项重要但具有挑战性的任务,在标准化报告生成、远程医疗以及通过协助专家降低医学检查成本等方面都有应用。在本文中,我们使用一种新颖的时空循环深度学习网络来利用时间序列信息,以自动分割超声电影剪辑中的甲状腺。我们分四个阶段训练基于DeepLabv3+的卷积长短期记忆模型,通过利用超声电影剪辑中的空间上下文来执行语义分割。主干DeepLabv3+模型被复制六次,并且输出层在空洞空间金字塔池化配置中被替换为卷积长短期记忆层。我们提出的模型在囊肿方面的平均交并比分数为0.427,在结节方面为0.533,在甲状腺方面为0.739。我们展示了卷积长短期记忆模型在甲状腺超声分割中的潜在应用。