Suppr超能文献

基于卷积神经网络的两阶段肝脏和肿瘤分割算法

Two-Stage Liver and Tumor Segmentation Algorithm Based on Convolutional Neural Network.

作者信息

Meng Lu, Zhang Qianqian, Bu Sihang

机构信息

College of Information Science and Engineering, Northeastern University, Shenyang 110000, China.

出版信息

Diagnostics (Basel). 2021 Sep 29;11(10):1806. doi: 10.3390/diagnostics11101806.

Abstract

The liver is an essential metabolic organ of the human body, and malignant liver tumors seriously affect and threaten human life. The segmentation algorithm for liver and liver tumors is one of the essential branches of computer-aided diagnosis. This paper proposed a two-stage liver and tumor segmentation algorithm based on the convolutional neural network (CNN). In the present study, we used two stages to segment the liver and tumors: liver localization and tumor segmentation. In the liver localization stage, the network segments the liver region, adopts the encoding-decoding structure and long-distance feature fusion operation, and utilizes the shallow features' spatial information to improve liver identification. In the tumor segmentation stage, based on the liver segmentation results of the first two steps, a CNN model was designed to accurately identify the liver tumors by using the 2D image features and 3D spatial features of the CT image slices. At the same time, we use the attention mechanism to improve the segmentation performance of small liver tumors. The proposed algorithm was tested on the public data set Liver Tumor Segmentation Challenge (LiTS). The Dice coefficient of liver segmentation was 0.967, and the Dice coefficient of tumor segmentation was 0.725. The proposed algorithm can accurately segment the liver and liver tumors in CT images. Compared with other state-of-the-art algorithms, the segmentation results of the proposed algorithm rank the highest in the Dice coefficient.

摘要

肝脏是人体重要的代谢器官,肝脏恶性肿瘤严重影响并威胁人类生命。肝脏及肝脏肿瘤的分割算法是计算机辅助诊断的重要分支之一。本文提出了一种基于卷积神经网络(CNN)的两阶段肝脏及肿瘤分割算法。在本研究中,我们分两个阶段对肝脏和肿瘤进行分割:肝脏定位和肿瘤分割。在肝脏定位阶段,网络对肝脏区域进行分割,采用编解码结构和远距离特征融合操作,并利用浅层特征的空间信息来提高肝脏识别能力。在肿瘤分割阶段,基于前两步的肝脏分割结果,设计了一个CNN模型,通过利用CT图像切片的二维图像特征和三维空间特征来准确识别肝脏肿瘤。同时,我们使用注意力机制来提高小肝脏肿瘤的分割性能。所提出的算法在公共数据集肝脏肿瘤分割挑战赛(LiTS)上进行了测试。肝脏分割的Dice系数为0.967,肿瘤分割的Dice系数为0.725。所提出的算法能够准确分割CT图像中的肝脏和肝脏肿瘤。与其他最先进的算法相比,所提出算法的分割结果在Dice系数方面排名最高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c48/8534656/5bb42170d29b/diagnostics-11-01806-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验