Shang Xiangjun, Su Xiangbin, Liu Hanqing, Hao Huiming, Li Shulun, Dai Deyan, Li Mifeng, Yu Ying, Zhang Yu, Wang Guowei, Xu Yingqiang, Ni Haiqiao, Niu Zhichuan
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Nanomaterials (Basel). 2023 Jun 28;13(13):1959. doi: 10.3390/nano13131959.
In this work, we developed pre-grown annealing to form β2 reconstruction sites among β or α (2 × 4) reconstruction phase to promote nucleation for high-density, size/wafer-uniform, photoluminescence (PL)-optimal InAs quantum dot (QD) growth on a large GaAs wafer. Using this, the QD density reached 580 (860) μm at a room-temperature (T) spectral FWHM of 34 (41) meV at the wafer center (and surrounding) (high-rate low-T growth). The smallest FWHM reached 23.6 (24.9) meV at a density of 190 (260) μm (low-rate high-T). The mediate rate formed uniform QDs in the traditional β phase, at a density of 320 (400) μm and a spectral FWHM of 28 (34) meV, while size-diverse QDs formed in β2 at a spectral FWHM of 92 (68) meV and a density of 370 (440) μm. From atomic-force-microscope QD height distribution and T-dependent PL spectroscopy, it is found that compared to the dense QDs grown in β phase (mediate rate, 320 μm) with the most large dots (240 μm), the dense QDs grown in β2 phase (580 μm) show many small dots with inter-dot coupling in favor of unsaturated filling and high injection to large dots for PL. The controllable annealing (T, duration) forms β2 or β2-mixed α or β phase in favor of a wafer-uniform dot island and the faster T change enables optimal T for QD growth.
在本工作中,我们开发了预生长退火工艺,以在β或α(2×4)重构相中形成β2重构位点,从而促进高密度、尺寸/晶圆均匀、光致发光(PL)最佳的InAs量子点(QD)在大尺寸GaAs晶圆上的成核生长。通过这种方法,在晶圆中心(及周边)实现了室温(T)光谱半高宽(FWHM)为34(41)meV时量子点密度达到580(860)μm²(高速低温生长)。在密度为190(260)μm²时,最小半高宽达到23.6(24.9)meV(低速高温生长)。中等速率在传统β相中形成均匀量子点,密度为320(400)μm²,光谱半高宽为28(34)meV,而在β2相中形成尺寸多样的量子点,光谱半高宽为92(68)meV,密度为37(440)μm²。从原子力显微镜量子点高度分布和温度依赖的PL光谱可知,与在β相中生长的密集量子点(中等速率,320μm²)中大多为大尺寸量子点(240nm)相比,在β2相中生长的密集量子点(580μm²)有许多小尺寸量子点,且量子点间存在耦合,有利于不饱和填充以及向大尺寸量子点的高效注入以实现PL。可控的退火(温度、持续时间)形成β2或β2混合α或β相,有利于在晶圆上形成均匀的量子点岛,且更快的温度变化能够实现量子点生长的最佳温度。