Guillén-Carvajal Karen, Valdez-Salas Benjamín, Beltrán-Partida Ernesto, Salomón-Carlos Jorge, Cheng Nelson
Departamento de Corrosión y Materiales, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez and Normal s/n, Mexicali 21280, Baja California, Mexico.
Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle Normal s/n, Mexicali 21280, Baja California, Mexico.
Polymers (Basel). 2023 Jun 21;15(13):2762. doi: 10.3390/polym15132762.
Hydrogels are versatile biomaterials characterized by three-dimensional, cross-linked, highly hydrated polymeric networks. These polymers exhibit a great variety of biochemical and biophysical properties, which allow for the diffusion of diverse molecules, such as drugs, active ingredients, growth factors, and nanoparticles. Meanwhile, these polymers can control chemical and molecular interactions at the cellular level. The polymeric network can be molded into different structures, imitating the structural characteristics of surrounding tissues and bone defects. Interestingly, the application of hydrogels in bone tissue engineering (BTE) has been gathering significant attention due to the beneficial bone improvement results that have been achieved. Moreover, essential clinical and osteoblastic fate-controlling advances have been achieved with the use of synthetic polymers in the production of hydrogels. However, current trends look towards fabricating hydrogels from biological precursors, such as biopolymers, due to the high biocompatibility, degradability, and mechanical control that can be regulated. Therefore, this review analyzes the concept of hydrogels and the characteristics of chitosan, collagen, and gelatin as excellent candidates for fabricating BTE scaffolds. The changes and opportunities brought on by these biopolymers in bone regeneration are discussed, considering the integration, synergy, and biocompatibility features.
水凝胶是一种多功能生物材料,其特征在于三维交联的高度水合聚合物网络。这些聚合物展现出各种各样的生化和生物物理特性,这使得不同的分子,如药物、活性成分、生长因子和纳米颗粒能够扩散。同时,这些聚合物可以在细胞水平上控制化学和分子相互作用。聚合物网络可以被模制成不同的结构,模仿周围组织和骨缺损的结构特征。有趣的是,由于已取得的有益的骨改善效果,水凝胶在骨组织工程(BTE)中的应用一直备受关注。此外,在水凝胶生产中使用合成聚合物已经取得了重要的临床和控制成骨细胞命运的进展。然而,由于生物聚合物具有高生物相容性、可降解性以及可调节的机械控制等特性,目前的趋势是由生物前体,如生物聚合物来制备水凝胶。因此,本综述分析了水凝胶的概念以及壳聚糖、胶原蛋白和明胶作为制备BTE支架的优秀候选材料的特性。考虑到整合性、协同性和生物相容性特征,讨论了这些生物聚合物在骨再生中带来的变化和机遇。