Suppr超能文献

基于极端随机树算法的低成本二氧化碳传感器校准评估。

Calibration Assessment of Low-Cost Carbon Dioxide Sensors Using the Extremely Randomized Trees Algorithm.

机构信息

Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), Parnamirim 59124-455, Brazil.

Algoritmi Research Centre, University of Minho, 4800-058 Guimarães, Portugal.

出版信息

Sensors (Basel). 2023 Jul 4;23(13):6153. doi: 10.3390/s23136153.

Abstract

As the monitoring of carbon dioxide is an important proxy to estimate the air quality of indoor and outdoor environments, it is essential to obtain trustful data from CO sensors. However, the use of widely available low-cost sensors may imply lower data quality, especially regarding accuracy. This paper proposes a new approach for enhancing the accuracy of low-cost CO sensors using an extremely randomized trees algorithm. It also reports the results obtained from experimental data collected from sensors that were exposed to both indoor and outdoor environments. The indoor experimental set was composed of two metal oxide semiconductors (MOS) and two non-dispersive infrared (NDIR) sensors next to a reference sensor for carbon dioxide and independent sensors for air temperature and relative humidity. The outdoor experimental exposure analysis was performed using a third-party dataset which fit into our goals: the work consisted of fourteen stations using low-cost NDIR sensors geographically spread around reference stations. One calibration model was trained for each sensor unit separately, and, in the indoor experiment, it managed to reduce the mean absolute error (MAE) of NDIR sensors by up to 90%, reach very good linearity with MOS sensors in the indoor experiment (r value of 0.994), and reduce the MAE by up to 98% in the outdoor dataset. We have found in the outdoor dataset analysis that the exposure time of the sensor itself may be considered by the algorithm to achieve better accuracy. We also observed that even a relatively small amount of data may provide enough information to perform a useful calibration if they contain enough data variety. We conclude that the proper use of machine learning algorithms on sensor readings can be very effective to obtain higher data quality from low-cost gas sensors either indoors or outdoors, regardless of the sensor technology.

摘要

由于二氧化碳监测是评估室内外环境空气质量的重要指标,因此从 CO 传感器获得可靠的数据至关重要。然而,广泛使用低成本传感器可能意味着数据质量较低,尤其是在准确性方面。本文提出了一种使用极端随机树算法提高低成本 CO 传感器精度的新方法。它还报告了从暴露于室内和室外环境的传感器收集的实验数据中获得的结果。室内实验设置由两个金属氧化物半导体 (MOS) 和两个非分散性红外 (NDIR) 传感器组成,旁边是一个用于二氧化碳的参考传感器和独立的空气温度和相对湿度传感器。室外实验暴露分析使用第三方数据集进行,该数据集符合我们的目标:该工作由 14 个站组成,使用地理上分布在参考站周围的低成本 NDIR 传感器。为每个传感器单元分别训练了一个校准模型,在室内实验中,它成功地将 NDIR 传感器的平均绝对误差 (MAE) 降低了 90%,在室内实验中与 MOS 传感器具有非常好的线性度(r 值为 0.994),并将室外数据集的 MAE 降低了 98%。我们在室外数据集分析中发现,传感器本身的暴露时间可以被算法考虑,以实现更高的准确性。我们还观察到,即使数据量相对较少,如果其中包含足够的数据多样性,也可以提供足够的信息来进行有用的校准。我们得出结论,无论传感器技术如何,在传感器读数上正确使用机器学习算法都可以非常有效地从低成本气体传感器获得更高的数据质量,无论是在室内还是室外。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6d/10346366/0f5ba6fbe638/sensors-23-06153-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验