Mattinen Miika, Schulpen Jeff J P M, Dawley Rebecca A, Gity Farzan, Verheijen Marcel A, Kessels Wilhelmus M M, Bol Ageeth A
Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States.
ACS Appl Mater Interfaces. 2023 Jul 26;15(29):35565-35579. doi: 10.1021/acsami.3c02466. Epub 2023 Jul 17.
Two-dimensional MoS is a promising material for applications, including electronics and electrocatalysis. However, scalable methods capable of depositing MoS at low temperatures are scarce. Herein, we present a toolbox of advanced plasma-enhanced atomic layer deposition (ALD) processes, producing wafer-scale polycrystalline MoS films of accurately controlled thickness. Our ALD processes are based on two individually controlled plasma exposures, one optimized for deposition and the other for modification. In this way, film properties can be tailored toward different applications at a very low deposition temperature of 150 °C. For the modification step, either H or Ar plasma can be used to combat excess sulfur incorporation and crystallize the films. Using H plasma, a higher degree of crystallinity compared with other reported low-temperature processes is achieved. Applying H plasma steps periodically instead of every ALD cycle allows for control of the morphology and enables deposition of smooth, polycrystalline MoS films. Using an Ar plasma instead, more disordered MoS films are deposited, which show promise for the electrochemical hydrogen evolution reaction. For electronics, our processes enable control of the carrier density from 6 × 10 to 2 × 10 cm with Hall mobilities up to 0.3 cm V s. The process toolbox forms a basis for rational design of low-temperature transition metal dichalcogenide deposition processes compatible with a range of substrates and applications.
二维二硫化钼是一种很有应用前景的材料,可用于电子学和电催化等领域。然而,能够在低温下沉积二硫化钼的可扩展方法却很少。在此,我们展示了一个先进的等离子体增强原子层沉积(ALD)工艺工具箱,可制备出厚度精确可控的晶圆级多晶二硫化钼薄膜。我们的ALD工艺基于两次独立控制的等离子体曝光,一次针对沉积进行优化,另一次针对改性。通过这种方式,在150°C的非常低的沉积温度下,薄膜性能可以针对不同应用进行定制。对于改性步骤,可以使用氢等离子体或氩等离子体来对抗过量的硫掺入并使薄膜结晶。使用氢等离子体,与其他报道的低温工艺相比,可实现更高的结晶度。定期而不是在每个ALD循环中应用氢等离子体步骤,可以控制薄膜的形貌,并能够沉积光滑的多晶二硫化钼薄膜。相反,使用氩等离子体,则会沉积更无序的二硫化钼薄膜,这在电化学析氢反应方面显示出前景。对于电子学应用,我们的工艺能够将载流子密度控制在6×10至2×10 cm,霍尔迁移率高达0.3 cm V s。该工艺工具箱为合理设计与一系列衬底和应用兼容的低温过渡金属二硫属化物沉积工艺奠定了基础。