Suppr超能文献

运用合成共进化和机器学习来设计蛋白质-蛋白质相互作用。

Deploying synthetic coevolution and machine learning to engineer protein-protein interactions.

机构信息

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Science. 2023 Jul 28;381(6656):eadh1720. doi: 10.1126/science.adh1720.

Abstract

Fine-tuning of protein-protein interactions occurs naturally through coevolution, but this process is difficult to recapitulate in the laboratory. We describe a platform for synthetic protein-protein coevolution that can isolate matched pairs of interacting muteins from complex libraries. This large dataset of coevolved complexes drove a systems-level analysis of molecular recognition between Z domain-affibody pairs spanning a wide range of structures, affinities, cross-reactivities, and orthogonalities, and captured a broad spectrum of coevolutionary networks. Furthermore, we harnessed pretrained protein language models to expand, in silico, the amino acid diversity of our coevolution screen, predicting remodeled interfaces beyond the reach of the experimental library. The integration of these approaches provides a means of simulating protein coevolution and generating protein complexes with diverse molecular recognition properties for biotechnology and synthetic biology.

摘要

蛋白质-蛋白质相互作用的微调是通过共进化自然发生的,但在实验室中很难再现这个过程。我们描述了一个用于合成蛋白质共进化的平台,可以从复杂的文库中分离出相互作用的突变体匹配对。这个大型共进化复合物数据集驱动了一个系统水平的分析,研究了跨越广泛结构、亲和力、交叉反应性和正交性的 Z 结构域-affibody 对之间的分子识别,并捕获了广泛的共进化网络。此外,我们利用预先训练好的蛋白质语言模型,在计算机上扩展了我们的共进化筛选的氨基酸多样性,预测了实验文库无法达到的重塑界面。这些方法的整合提供了一种模拟蛋白质共进化的方法,并生成具有多种分子识别特性的蛋白质复合物,用于生物技术和合成生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d3f/10403280/7f111a9772ab/nihms-1914187-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验