Lee Tzu-Yi, Miao Wen-Chien, Hung Yu-Ying, Bai Yi-Hong, Chen Pei-Tien, Huang Wei-Ta, Chen Kuan-An, Lin Chien-Chung, Chen Fang-Chung, Hong Yu-Heng, Kuo Hao-Chung
Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan.
Nanomaterials (Basel). 2023 Jul 19;13(14):2099. doi: 10.3390/nano13142099.
Quantum dot (QD)-based RGB micro light-emitting diode (μ-LED) technology shows immense potential for achieving full-color displays. In this study, we propose a novel structural design that combines blue and quantum well (QW)-intermixing ultraviolet (UV)-hybrid μ-LEDs to achieve high color-conversion efficiency (CCE). For the first time, the impact of various combinations of QD and TiO concentrations, as well as thickness variations on photoluminescence efficiency (PLQY), has been systematically examined through simulation. High-efficiency color-conversion layer (CCL) have been successfully fabricated as a result of these simulations, leading to significant savings in time and material costs. By incorporating scattering particles of TiO in the CCL, we successfully scatter light and disperse QDs, effectively reducing self-aggregation and greatly improving illumination uniformity. Additionally, this design significantly enhances light absorption within the QD films. To enhance device reliability, we introduce a passivation protection layer using low-temperature atomic layer deposition (ALD) technology on the CCL surface. Moreover, we achieve impressive CCE values of 96.25% and 92.91% for the red and green CCLs, respectively, by integrating a modified distributed Bragg reflector (DBR) to suppress light leakage. Our hybrid structure design, in combination with an optical simulation system, not only facilitates rapid acquisition of optimal parameters for highly uniform and efficient color conversion in μ-LED displays but also expands the color gamut to achieve 128.2% in the National Television Standards Committee (NTSC) space and 95.8% in the Rec. 2020 standard. In essence, this research outlines a promising avenue towards the development of bespoke, high-performance μ-LED displays.
基于量子点(QD)的RGB微发光二极管(μ-LED)技术在实现全彩显示方面展现出巨大潜力。在本研究中,我们提出了一种新颖的结构设计,将蓝色和量子阱(QW)混合的紫外线(UV)混合μ-LED相结合,以实现高颜色转换效率(CCE)。首次通过模拟系统地研究了QD和TiO浓度的各种组合以及厚度变化对光致发光效率(PLQY)的影响。由于这些模拟,成功制造出了高效颜色转换层(CCL),从而显著节省了时间和材料成本。通过在CCL中掺入TiO散射颗粒,我们成功地散射了光并分散了QD,有效减少了自聚集并大大提高了照明均匀性。此外,这种设计显著增强了QD薄膜内的光吸收。为了提高器件可靠性,我们在CCL表面采用低温原子层沉积(ALD)技术引入了钝化保护层。此外,通过集成改进的分布式布拉格反射器(DBR)以抑制光泄漏,我们分别在红色和绿色CCL中实现了令人印象深刻的CCE值,分别为96.25%和92.91%。我们的混合结构设计与光学模拟系统相结合,不仅有助于快速获取用于μ-LED显示器中高度均匀和高效颜色转换的最佳参数,还将色域扩展到在国家电视标准委员会(NTSC)空间中达到128.2%,在Rec. 2020标准中达到95.8%。本质上,这项研究为定制高性能μ-LED显示器的发展勾勒出了一条充满希望的途径。