Department of Bio-AI Convergence, Chungnam National University, 305-764, Daejeon, Korea.
Division of Animal and Dairy Science, Chungnam National University, 305-764, Daejeon, Korea.
Genet Sel Evol. 2023 Jul 31;55(1):56. doi: 10.1186/s12711-023-00825-y.
Genomic prediction has become widespread as a valuable tool to estimate genetic merit in animal and plant breeding. Here we develop a novel genomic prediction algorithm, called deepGBLUP, which integrates deep learning networks and a genomic best linear unbiased prediction (GBLUP) framework. The deep learning networks assign marker effects using locally-connected layers and subsequently use them to estimate an initial genomic value through fully-connected layers. The GBLUP framework estimates three genomic values (additive, dominance, and epistasis) by leveraging respective genetic relationship matrices. Finally, deepGBLUP predicts a final genomic value by summing all the estimated genomic values.
We compared the proposed deepGBLUP with the conventional GBLUP and Bayesian methods. Extensive experiments demonstrate that the proposed deepGBLUP yields state-of-the-art performance on Korean native cattle data across diverse traits, marker densities, and training sizes. In addition, they show that the proposed deepGBLUP can outperform the previous methods on simulated data across various heritabilities and quantitative trait loci (QTL) effects.
We introduced a novel genomic prediction algorithm, deepGBLUP, which successfully integrates deep learning networks and GBLUP framework. Through comprehensive evaluations on the Korean native cattle data and simulated data, deepGBLUP consistently achieved superior performance across various traits, marker densities, training sizes, heritabilities, and QTL effects. Therefore, deepGBLUP is an efficient method to estimate an accurate genomic value. The source code and manual for deepGBLUP are available at https://github.com/gywns6287/deepGBLUP .
基因组预测已成为动物和植物育种中估计遗传优势的一种有价值的工具,得到了广泛应用。在这里,我们开发了一种新的基因组预测算法,称为 deepGBLUP,它集成了深度学习网络和基因组最佳线性无偏预测(GBLUP)框架。深度学习网络使用局部连接层为标记效应分配权重,然后使用全连接层通过这些权重来估计初始基因组值。GBLUP 框架通过利用各自的遗传关系矩阵来估计三种基因组值(加性、显性和上位性)。最后,deepGBLUP 通过对所有估计的基因组值求和来预测最终的基因组值。
我们将所提出的 deepGBLUP 与传统的 GBLUP 和贝叶斯方法进行了比较。广泛的实验表明,在所提出的 deepGBLUP 算法在各种性状、标记密度和训练规模的韩国本土牛数据上表现出了最先进的性能。此外,它们还表明,在所提出的 deepGBLUP 算法在各种遗传力和数量性状位点(QTL)效应的模拟数据上也可以优于以前的方法。
我们引入了一种新的基因组预测算法 deepGBLUP,它成功地集成了深度学习网络和 GBLUP 框架。通过对韩国本土牛数据和模拟数据的综合评估,deepGBLUP 在各种性状、标记密度、训练规模、遗传力和 QTL 效应方面都表现出了卓越的性能。因此,deepGBLUP 是一种估计准确基因组值的有效方法。deepGBLUP 的源代码和手册可在 https://github.com/gywns6287/deepGBLUP 上获得。