Suppr超能文献

人工智能和生物信息学分析儿童转录基因组标记物以预测自闭症谱系障碍。

Artificial intelligence and bioinformatics analyze markers of children's transcriptional genome to predict autism spectrum disorder.

作者信息

Tang Huitao, Liang Jiawei, Chai Keping, Gu Huaqian, Ye Weiping, Cao Panlong, Chen Shufang, Shen Daojiang

机构信息

Department of Pediatrics, Zhejiang Hospital, Hangzhou, China.

College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Neurol. 2023 Jul 17;14:1203375. doi: 10.3389/fneur.2023.1203375. eCollection 2023.

Abstract

INTRODUCTION

Autism spectrum disorder (ASD), characterized by difficulties in social interaction and communication as well as restricted interests and repetitive behaviors, is extremely challenging to diagnose in toddlers. Early diagnosis and intervention are crucial however.

METHODS

In this study, we developed a machine learning classification model based on mRNA expression data from the peripheral blood of 128 toddlers with ASD and 126 controls. Differentially expressed genes (DEGs) between ASD and controls were identified.

RESULTS

We identified genes such as UBE4B, SPATA2 and RBM3 as DEGs, mainly involved in immune-related pathways. 21 genes were screened as key biomarkers using LASSO regression, yielding an accuracy of 86%. A neural network model based on these 21 genes achieved an AUC of 0.88.

DISCUSSION

Our findings suggest that the identified neurotransmitters and 21 immune-related biomarkers may facilitate the early diagnosis of ASD. The mRNA expression profile sheds light on the biological underpinnings of ASD in toddlers and potential biomarkers for early identification. Nevertheless, larger samples are needed to validate these biomarkers.

摘要

引言

自闭症谱系障碍(ASD)的特征是社交互动和沟通困难,以及兴趣受限和重复行为,对幼儿进行诊断极具挑战性。然而,早期诊断和干预至关重要。

方法

在本研究中,我们基于128名患有ASD的幼儿和126名对照幼儿外周血的mRNA表达数据,开发了一种机器学习分类模型。确定了ASD与对照之间的差异表达基因(DEG)。

结果

我们确定了UBE4B、SPATA2和RBM3等基因作为DEG,主要参与免疫相关途径。使用LASSO回归筛选出21个基因作为关键生物标志物,准确率达86%。基于这21个基因的神经网络模型的AUC为0.88。

讨论

我们的研究结果表明,所确定的神经递质和21种免疫相关生物标志物可能有助于ASD的早期诊断。mRNA表达谱揭示了幼儿ASD的生物学基础以及早期识别的潜在生物标志物。尽管如此,仍需要更大的样本量来验证这些生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a55/10390071/c69a8ffe3235/fneur-14-1203375-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验