Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, China.
College of Chemical Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
Adv Mater. 2023 Nov;35(48):e2304956. doi: 10.1002/adma.202304956. Epub 2023 Oct 24.
Neuroelectrical signals transmitted onto the skin tend to decay to an extremely weak level, making them highly susceptible to interference from the environment and body movement. Meanwhile, for comprehensively understanding cognitive nerve conduction, multimodal sensing of neural signals, such as magnetic resonance imaging (MRI) and functional near-infrared spectroscopy (fNIRS), is highly required. Previous metal or polymer conductors cannot either provide a seamless on-skin feature for accurate sensing of neuroelectrical signals or be compatible with multimodal imaging techniques without opto- and magnet- artifacts. Herein, a ≈20 nm thick MXene film that is able to simultaneously detect electrophysiological signals and perform imaging by MRI and fNIRS with high fidelity is reported. The ultrathin film is made of crosslinked Ti C T film via poly (3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS), showing a record high electroconductivity and transparency combination (11 000 S cm @89%). Among them, PEDOT: PSS not only plays a cross-linking role to stabilize MXene film but also shortens the interlayer distance for effective charge transfer and high transparency. Thus, it can achieve a low interfacial impedance with skin or neural surfaces for accurate recording of electrophysiological signals with low motion artifacts. Besides, the high transparency originating from the ultrathin feature leads to good compatibility with fNIRS and MRI without optical and magnetic artifacts, enabling multimodal cognitive neural monitoring during prolonged use.
神经电信号传输到皮肤表面会衰减到极其微弱的水平,因此极易受到环境和身体运动的干扰。同时,为了全面了解认知神经传导,需要对神经信号进行多模态传感,例如磁共振成像(MRI)和功能近红外光谱(fNIRS)。以往的金属或聚合物导体既不能为神经电信号的精确感应提供无缝的皮肤特性,也不能与多模态成像技术兼容,而不会产生光电和磁伪影。在此,报道了一种约 20nm 厚的 MXene 薄膜,它能够通过 MRI 和 fNIRS 以高保真度同时检测电生理信号并进行成像。该超薄膜由交联的 Ti C T 薄膜通过聚(3,4-亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)制成,表现出创纪录的高电导率和透明度组合(11000 S cm@89%)。其中,PEDOT:PSS 不仅起到交联作用以稳定 MXene 薄膜,而且还缩短了层间距离,以实现有效的电荷转移和高透明度。因此,它可以与皮肤或神经表面实现低界面阻抗,从而实现低运动伪影的精确电生理信号记录。此外,源自超薄特性的高透明度与 fNIRS 和 MRI 具有良好的兼容性,不会产生光学和磁性伪影,从而可以在长时间使用过程中进行多模态认知神经监测。