Suppr超能文献

深度学习模型在脑磁共振成像中的开发与应用:综述

Developing and deploying deep learning models in brain magnetic resonance imaging: A review.

机构信息

Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Department of Diagnostic, Molecular and Interventional Radiology, Mount Sinai Hospital, New York, USA.

Department of Electrical and Computer Engineering, Technical University Munich, Munich, Germany.

出版信息

NMR Biomed. 2023 Dec;36(12):e5014. doi: 10.1002/nbm.5014. Epub 2023 Aug 4.

Abstract

Magnetic resonance imaging (MRI) of the brain has benefited from deep learning (DL) to alleviate the burden on radiologists and MR technologists, and improve throughput. The easy accessibility of DL tools has resulted in a rapid increase of DL models and subsequent peer-reviewed publications. However, the rate of deployment in clinical settings is low. Therefore, this review attempts to bring together the ideas from data collection to deployment in the clinic, building on the guidelines and principles that accreditation agencies have espoused. We introduce the need for and the role of DL to deliver accessible MRI. This is followed by a brief review of DL examples in the context of neuropathologies. Based on these studies and others, we collate the prerequisites to develop and deploy DL models for brain MRI. We then delve into the guiding principles to develop good machine learning practices in the context of neuroimaging, with a focus on explainability. A checklist based on the United States Food and Drug Administration's good machine learning practices is provided as a summary of these guidelines. Finally, we review the current challenges and future opportunities in DL for brain MRI.

摘要

脑磁共振成像(MRI)得益于深度学习(DL),可减轻放射科医生和磁共振技师的负担,并提高吞吐量。DL 工具易于获取,导致 DL 模型和随后的同行评审出版物迅速增加。然而,在临床环境中的部署率很低。因此,本综述试图从数据收集到在临床中的部署汇集思路,以认证机构所拥护的原则和指南为基础。我们介绍了提供可及性 MRI 的必要性和 DL 的作用。接着简要回顾了神经病理学背景下的 DL 示例。基于这些研究和其他研究,我们整理了开发和部署脑 MRI 的 DL 模型所需的前提条件。然后,我们深入研究了神经影像学中机器学习实践的指导原则,重点是可解释性。基于美国食品和药物管理局的良好机器学习实践,提供了一份检查表,作为这些指南的总结。最后,我们回顾了脑 MRI 中 DL 的当前挑战和未来机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验