Suppr超能文献

使用谷歌趋势研究恶性肿瘤的特征、用途和偏差:系统评价。

The Characteristics, Uses, and Biases of Studies Related to Malignancies Using Google Trends: Systematic Review.

机构信息

Department of Rheumatology, District Hospital in Kościan, Kościan, Poland.

Department of the Treatment of Obesity, Metabolic Disorders, and of Clinical Dietetics, Poznań University of Medical Sciences, Poznań, Poland.

出版信息

J Med Internet Res. 2023 Aug 4;25:e47582. doi: 10.2196/47582.

Abstract

BACKGROUND

The internet is a primary source of health information for patients, supplementing physician care. Google Trends (GT), a popular tool, allows the exploration of public interest in health-related phenomena. Despite the growing volume of GT studies, none have focused explicitly on oncology, creating a need for a systematic review to bridge this gap.

OBJECTIVE

We aimed to systematically characterize studies related to oncology using GT to describe its utilities and biases.

METHODS

We included all studies that used GT to analyze Google searches related to malignancies. We excluded studies written in languages other than English. The search was performed using the PubMed engine on August 1, 2022. We used the following search input: "Google trends" AND ("oncology" OR "cancer" or "malignancy" OR "tumor" OR "lymphoma" OR "multiple myeloma" OR "leukemia"). We analyzed sources of bias that included using search terms instead of topics, lack of confrontation of GT statistics with real-world data, and absence of sensitivity analysis. We performed descriptive statistics.

RESULTS

A total of 85 articles were included. The first study using GT for oncology research was published in 2013, and since then, the number of publications has increased annually. The studies were categorized as follows: 22% (19/85) were related to prophylaxis, 20% (17/85) pertained to awareness events, 11% (9/85) were celebrity-related, 13% (11/85) were related to COVID-19, and 47% (40/85) fell into other categories. The most frequently analyzed cancers were breast (n=28), prostate (n=26), lung (n=18), and colorectal cancers (n=18). We discovered that of the 85 studies, 17 (20%) acknowledged using GT topics instead of search terms, 79 (93%) disclosed all search input details necessary for replicating their results, and 34 (40%) compared GT statistics with real-world data. The most prevalent methods for analyzing the GT data were correlation analysis (55/85, 65%) and peak analysis (43/85, 51%). The authors of only 11% (9/85) of the studies performed a sensitivity analysis.

CONCLUSIONS

The number of studies related to oncology using GT data has increased annually. The studies included in this systematic review demonstrate a variety of concerning topics, search strategies, and statistical methodologies. The most frequently analyzed cancers were breast, prostate, lung, colorectal, skin, and cervical cancers, potentially reflecting their prevalence in the population or public interest. Although most researchers provided reproducible search inputs, only one-fifth used GT topics instead of search terms, and many studies lacked a sensitivity analysis. Scientists using GT for medical research should ensure the quality of studies by providing a transparent search strategy to reproduce results, preferring to use topics over search terms, and performing robust statistical calculations coupled with sensitivity analysis.

摘要

背景

互联网是患者获取健康信息的主要来源,可补充医生的治疗。谷歌趋势(GT)是一种流行的工具,可用于研究公众对健康相关现象的兴趣。尽管 GT 的研究数量不断增加,但尚无研究专门针对肿瘤学,因此需要进行系统评价来填补这一空白。

目的

我们旨在使用 GT 系统地描述与肿瘤学相关的研究,以描述其用途和偏差。

方法

我们纳入了所有使用 GT 分析与恶性肿瘤相关的谷歌搜索的研究。我们排除了用其他语言撰写的研究。该搜索于 2022 年 8 月 1 日在 PubMed 引擎上进行。我们使用了以下搜索输入:“Google trends” AND (“oncology” OR “cancer” or “malignancy” OR “tumor” OR “lymphoma” OR “multiple myeloma” OR “leukemia”)。我们分析了可能存在偏差的来源,包括使用搜索词而不是主题、缺乏 GT 统计数据与实际数据的对比,以及缺乏敏感性分析。我们进行了描述性统计分析。

结果

共纳入 85 篇文章。第一篇使用 GT 进行肿瘤学研究的文章发表于 2013 年,此后,每年发表的文章数量都在增加。这些研究分为以下几类:22%(19/85)与预防有关,20%(17/85)与宣传活动有关,11%(9/85)与名人有关,13%(11/85)与 COVID-19 有关,47%(40/85)属于其他类别。分析最多的癌症包括乳腺癌(n=28)、前列腺癌(n=26)、肺癌(n=18)和结直肠癌(n=18)。我们发现,在这 85 项研究中,有 17 项(20%)承认使用了 GT 主题而不是搜索词,有 79 项(93%)公开了复制其结果所需的所有搜索输入细节,有 34 项(40%)将 GT 统计数据与实际数据进行了对比。分析 GT 数据最常用的方法是相关性分析(55/85,65%)和峰值分析(43/85,51%)。只有 11%(9/85)的研究进行了敏感性分析。

结论

使用 GT 数据的肿瘤学相关研究数量逐年增加。本系统评价纳入的研究展示了各种令人关注的主题、搜索策略和统计方法。分析最多的癌症包括乳腺癌、前列腺癌、肺癌、结直肠癌、皮肤癌和宫颈癌,这可能反映了它们在人群中的普遍存在或公众的兴趣。尽管大多数研究人员提供了可重现的搜索输入,但只有五分之一的研究使用了 GT 主题而不是搜索词,而且许多研究缺乏敏感性分析。使用 GT 进行医学研究的科学家应通过提供透明的搜索策略来确保研究质量,以便复制结果,最好使用主题而不是搜索词,并进行稳健的统计计算和敏感性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f07c/10439473/13d31d53b818/jmir_v25i1e47582_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验