Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
J Am Chem Soc. 2023 Aug 16;145(32):17819-17830. doi: 10.1021/jacs.3c04807. Epub 2023 Aug 6.
Programmable chemical circuits inspired by signaling networks in living cells are a promising approach for the development of adaptive and autonomous self-assembling molecular systems and material functions. Progress has been made at the molecular level, but connecting molecular control circuits to self-assembling larger elements such as colloids that enable real-space studies and access to functional materials is sparse and can suffer from kinetic traps, flocculation, or difficult system integration protocols. Herein, we report a toehold-mediated DNA strand displacement reaction network capable of autonomously directing two different microgels into transient and self-regulating co-assemblies. The microgels are functionalized with DNA and become elemental components of the network. The flexibility of the circuit design allows the installation of delay phases or accelerators by chaining additional circuit modules upstream or downstream of the core circuit. The design provides an adaptable and robust route to regulate other building blocks for advanced biomimetic functions.
受活细胞信号网络启发的可编程化学电路是开发自适应和自主自组装分子系统和材料功能的一种很有前途的方法。在分子水平上已经取得了进展,但将分子控制电路与自组装更大的元素(如胶体)连接起来,以进行实空间研究和获得功能材料的方法却很少,而且可能会受到动力学陷阱、絮凝或难以集成系统协议的影响。在此,我们报告了一个能够自主地将两种不同的微凝胶引导成瞬态和自调节共聚体的引发介导 DNA 链置换反应网络。微凝胶通过 DNA 功能化,成为网络的基本组成部分。该电路设计的灵活性允许通过在上游或下游核心电路中串联附加的电路模块来安装延迟阶段或加速器。该设计为调节其他构建块以实现高级仿生功能提供了一种适应性强且稳健的途径。