Department of Engineering Physics, Tsinghua University, Beijing, China.
Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China.
Med Phys. 2023 Nov;50(11):6789-6800. doi: 10.1002/mp.16663. Epub 2023 Aug 6.
Digital radiography is the most commonly utilized medical imaging technique worldwide, and the quality of radiographs plays a crucial role in accurate disease diagnosis. Therefore, evaluating the quality of radiographs is an essential step in medical examinations. However, manual evaluation can be time-consuming, labor-intensive, and prone to interobserver differences, making it less reliable.
To alleviate the workload of radiographic technologists and enhance the efficiency of radiograph quality evaluation, it is crucial to develop rapid and reliable quality evaluation methods and establish a set of quantitative evaluation standards. To address this, we have proposed a quality evaluation system for digital radiographs that utilizes deep learning techniques to achieve fast and precise evaluation.
The evaluation of frontal chest radiograph quality involves assessing patient positioning through semantic segmentation and foreign body detection. For lung, scapula, and clavicle segmentation in digital chest radiographs, a residual connection-based convolutional neural network π-ResUNet, was proposed. Criteria for patient positioning evaluation were established based on the segmentation and manual evaluation results. A convolutional neural network, FasterRCNN, was utilized to detect and localize foreign bodies in digital chest radiographs. To enhance the performance of both neural networks, a semi-supervised learning (SSL) strategy was implemented by incorporating a consistency loss that leverages a large number of unlabeled digital radiographs. We also trained the network using the fully supervised learning (FSL) strategy and compared their performance on the test set. The ChestXRay-14 and object-CXR datasets were used throughout the process.
By comparing with the manual annotation, the proposed network, trained using the SSL method, achieved a high Dice similarity coefficient (DSC) of 0.96, 0.88, and 0.88 for lung, scapula, and clavicle segmentation, respectively, outperforming the network trained with the FSL method. In addition, for foreign body detection, the proposed SSL method was superior to the FSL method, achieving an AUC (Area under receiver operating characteristic curve, Area under ROC curve) of 0.90 and an FROC (Free-response ROC) of 0.77 on the test dataset.
The experimental results show that our proposed system is well-suited for radiograph quality evaluation, with the semi-supervised learning method further improving the network's performance. The proposed method can evaluate the quality of a chest radiograph from two aspects-patient positioning and foreign body detection-within 1 s, offering a promising tool in radiograph quality evaluation.
数字 X 射线摄影是目前全球应用最广泛的医学成像技术,X 射线图像的质量对准确的疾病诊断起着至关重要的作用。因此,评估 X 射线图像的质量是医学检查的一个基本步骤。然而,人工评估既费时费力,又容易产生观察者之间的差异,因此不太可靠。
为了减轻放射技师的工作量,提高 X 射线图像质量评估的效率,开发快速可靠的质量评估方法和建立一套定量评估标准至关重要。为了解决这个问题,我们提出了一种利用深度学习技术实现快速准确评估的数字 X 射线图像质量评估系统。
评估胸部正位 X 射线片的质量需要通过语义分割和异物检测来评估患者的定位。对于数字胸部 X 射线片中的肺、肩胛骨和锁骨分割,我们提出了一种基于残差连接的卷积神经网络 π-ResUNet。根据分割和手动评估结果,建立了患者定位评估标准。利用 FasterRCNN 对数字胸部 X 射线片中的异物进行检测和定位。为了提高两个神经网络的性能,我们采用了一种半监督学习(SSL)策略,通过引入一致性损失来利用大量未标记的数字 X 射线。我们还分别使用完全监督学习(FSL)策略和比较他们在测试集上的性能来训练网络。整个过程都使用了 ChestXRay-14 和 object-CXR 数据集。
与手动标注相比,我们提出的网络,使用 SSL 方法训练,分别在肺、肩胛骨和锁骨分割方面达到了 0.96、0.88 和 0.88 的高 Dice 相似系数(DSC),优于使用 FSL 方法训练的网络。此外,对于异物检测,所提出的 SSL 方法优于 FSL 方法,在测试数据集上的 AUC(接收器操作特性曲线下面积,Area under ROC curve)为 0.90,FROC(自由响应 ROC)为 0.77。
实验结果表明,我们提出的系统非常适合 X 射线图像质量评估,半监督学习方法进一步提高了网络的性能。所提出的方法可以在 1 秒内从患者定位和异物检测两个方面评估胸部 X 射线片的质量,为 X 射线图像质量评估提供了一种有前途的工具。