Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia.
Department of Software Engineering, University of Management and Technology, Lahore 54770, Pakistan.
Sensors (Basel). 2022 Feb 17;22(4):1552. doi: 10.3390/s22041552.
The anterior cruciate ligament (ACL) is one of the main stabilizer parts of the knee. ACL injury leads to causes of osteoarthritis risk. ACL rupture is common in the young athletic population. Accurate segmentation at an early stage can improve the analysis and classification of anterior cruciate ligaments tears. This study automatically segmented the anterior cruciate ligament (ACL) tears from magnetic resonance imaging through deep learning. The knee mask was generated on the original Magnetic Resonance (MR) images to apply a semantic segmentation technique with convolutional neural network architecture U-Net. The proposed segmentation method was measured by accuracy, intersection over union (IoU), dice similarity coefficient (DSC), precision, recall and F1-score of 98.4%, 99.0%, 99.4%, 99.6%, 99.6% and 99.6% on 11451 training images, whereas on the validation images of 3817 was, respectively, 97.7%, 93.8%,96.8%, 96.5%, 97.3% and 96.9%. We also provide dice loss of training and test datasets that have remained 0.005 and 0.031, respectively. The experimental results show that the ACL segmentation on JPEG MRI images with U-Nets achieves accuracy that outperforms the human segmentation. The strategy has promising potential applications in medical image analytics for the segmentation of knee ACL tears for MR images.
前交叉韧带(ACL)是膝关节的主要稳定器之一。ACL 损伤会导致骨关节炎风险增加。ACL 断裂在年轻运动员中很常见。早期进行准确的分割可以改善前交叉韧带撕裂的分析和分类。本研究通过深度学习自动对磁共振成像中的前交叉韧带(ACL)撕裂进行分割。通过原始磁共振(MR)图像上的膝盖掩模,应用具有卷积神经网络架构 U-Net 的语义分割技术。该分割方法在 11451 张训练图像上的准确率、交并比(IoU)、骰子相似系数(DSC)、精度、召回率和 F1 分数分别为 98.4%、99.0%、99.4%、99.6%、99.6%和 99.6%,在 3817 张验证图像上的准确率、交并比(IoU)、骰子相似系数(DSC)、精度、召回率和 F1 分数分别为 97.7%、93.8%、96.8%、96.5%、97.3%和 96.9%。我们还提供了训练和测试数据集的骰子损失,分别保持在 0.005 和 0.031。实验结果表明,U-Nets 在 JPEG MRI 图像上的 ACL 分割达到了优于人工分割的准确率。该策略在医学图像分析中具有很大的应用潜力,可以用于 MR 图像中膝关节 ACL 撕裂的分割。