Suppr超能文献

人类癌症中与蛋白质表达相关的遗传、药物基因组学和免疫景观。

The Genetic, Pharmacogenomic, and Immune Landscapes Associated with Protein Expression across Human Cancers.

机构信息

Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, Indiana.

Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, Indiana.

出版信息

Cancer Res. 2023 Nov 15;83(22):3673-3680. doi: 10.1158/0008-5472.CAN-23-0758.

Abstract

UNLABELLED

Proteomics is a powerful approach that can rapidly enhance our understanding of cancer development. Detailed characterization of the genetic, pharmacogenomic, and immune landscape in relation to protein expression in patients with cancer could provide new insights into the functional roles of proteins in cancer. By taking advantage of the genotype data from The Cancer Genome Atlas and protein expression data from The Cancer Proteome Atlas, we characterized the effects of genetic variants on protein expression across 31 cancer types and identified approximately 100,000 protein quantitative trait loci (pQTL). Among these, over 8000 pQTLs were associated with patient overall survival. Furthermore, characterization of the impact of protein expression on more than 350 imputed anticancer drug responses in patients revealed nearly 230,000 significant associations. In addition, approximately 21,000 significant associations were identified between protein expression and immune cell abundance. Finally, a user-friendly data portal, GPIP (https://hanlaboratory.com/GPIP), was developed featuring multiple modules that enable researchers to explore, visualize, and browse multidimensional data. This detailed analysis reveals the associations between the proteomic landscape and genetic variation, patient outcome, the immune microenvironment, and drug response across cancer types, providing a resource that may offer valuable clinical insights and encourage further functional investigations of proteins in cancer.

SIGNIFICANCE

Comprehensive characterization of the relationship between protein expression and the genetic, pharmacogenomic, and immune landscape of tumors across cancer types provides a foundation for investigating the role of protein expression in cancer development and treatment.

摘要

未加标签

蛋白质组学是一种强大的方法,可以快速增强我们对癌症发展的理解。详细描述癌症患者的遗传、药物基因组学和免疫景观与蛋白质表达的关系,可以深入了解蛋白质在癌症中的功能作用。我们利用癌症基因组图谱的基因型数据和癌症蛋白质组图谱的蛋白质表达数据,对 31 种癌症类型中的遗传变异对蛋白质表达的影响进行了特征描述,并确定了大约 100000 个蛋白质数量性状基因座(pQTL)。其中,超过 8000 个 pQTL 与患者的总生存期相关。此外,对 350 多个患者中已推断的抗癌药物反应的蛋白质表达影响进行特征描述,揭示了近 230000 个显著关联。此外,在蛋白质表达与免疫细胞丰度之间确定了大约 21000 个显著关联。最后,开发了一个用户友好的数据门户 GPIP(https://hanlaboratory.com/GPIP),该门户具有多个模块,使研究人员能够探索、可视化和浏览多维数据。这项详细分析揭示了蛋白质组景观与遗传变异、患者结局、免疫微环境和癌症类型中药物反应之间的关联,为研究蛋白质在癌症发展和治疗中的作用提供了基础。

意义

全面描述蛋白质表达与肿瘤遗传、药物基因组学和免疫景观之间的关系,为研究蛋白质表达在癌症发展和治疗中的作用奠定了基础。

相似文献

5
Pan-cancer analysis of promoter activity quantitative trait loci.启动子活性数量性状位点的泛癌分析
NAR Cancer. 2023 Nov 14;5(4):zcad053. doi: 10.1093/narcan/zcad053. eCollection 2023 Dec.
6
Genetic control of the human brain proteome.人类大脑蛋白质组的遗传控制。
Am J Hum Genet. 2021 Mar 4;108(3):400-410. doi: 10.1016/j.ajhg.2021.01.012. Epub 2021 Feb 10.
10

本文引用的文献

3
Cell cycle control in cancer.癌症中的细胞周期调控。
Nat Rev Mol Cell Biol. 2022 Jan;23(1):74-88. doi: 10.1038/s41580-021-00404-3. Epub 2021 Sep 10.
8
TIMER2.0 for analysis of tumor-infiltrating immune cells.TIMER2.0 用于分析肿瘤浸润免疫细胞。
Nucleic Acids Res. 2020 Jul 2;48(W1):W509-W514. doi: 10.1093/nar/gkaa407.
9
A Multi-Omics Perspective of Quantitative Trait Loci in Precision Medicine.精准医学中定量性状基因座的多组学视角
Trends Genet. 2020 May;36(5):318-336. doi: 10.1016/j.tig.2020.01.009. Epub 2020 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验