Suppr超能文献

PathEX:全玻片图像提取的明智之选。

PathEX: Make good choice for whole slide image extraction.

机构信息

Renmin University of China School of Information, Beijing, P.R. China.

Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.

出版信息

PLoS One. 2024 Aug 29;19(8):e0304702. doi: 10.1371/journal.pone.0304702. eCollection 2024.

Abstract

BACKGROUND

The tile-based approach has been widely used for slide-level predictions in whole slide image (WSI) analysis. However, the irregular shapes and variable dimensions of tumor regions pose challenges for the process. To address this issue, we proposed PathEX, a framework that integrates intersection over tile (IoT) and background over tile (BoT) algorithms to extract tile images around boundaries of annotated regions while excluding the blank tile images within these regions.

METHODS

We developed PathEX, which incorporated IoT and BoT into tile extraction, for training a classification model in CAM (239 WSIs) and PAIP (40 WSIs) datasets. By adjusting the IoT and BoT parameters, we generated eight training sets and corresponding models for each dataset. The performance of PathEX was assessed on the testing set comprising 13,076 tile images from 48 WSIs of CAM dataset and 6,391 tile images from 10 WSIs of PAIP dataset.

RESULTS

PathEX could extract tile images around boundaries of annotated region differently by adjusting the IoT parameter, while exclusion of blank tile images within annotated regions achieved by setting the BoT parameter. As adjusting IoT from 0.1 to 1.0, and 1-BoT from 0.0 to 0.5, we got 8 train sets. Experimentation revealed that set C demonstrates potential as the most optimal candidate. Nevertheless, a combination of IoT values ranging from 0.2 to 0.5 and 1-BoT values ranging from 0.2 to 0.5 also yielded favorable outcomes.

CONCLUSIONS

In this study, we proposed PathEX, a framework that integrates IoT and BoT algorithms for tile image extraction at the boundaries of annotated regions while excluding blank tiles within these regions. Researchers can conveniently set the thresholds for IoT and BoT to facilitate tile image extraction in their own studies. The insights gained from this research provide valuable guidance for tile image extraction in digital pathology applications.

摘要

背景

基于瓦片的方法已广泛应用于全切片图像(WSI)分析中的幻灯片级预测。然而,肿瘤区域的不规则形状和可变尺寸给这个过程带来了挑战。为了解决这个问题,我们提出了 PathEX,这是一个集成了交集瓦片(IoT)和背景瓦片(BoT)算法的框架,用于提取注释区域边界周围的瓦片图像,同时排除这些区域内的空白瓦片图像。

方法

我们开发了 PathEX,它将 IoT 和 BoT 纳入瓦片提取中,用于在 CAM(239 张 WSI)和 PAIP(40 张 WSI)数据集上训练分类模型。通过调整 IoT 和 BoT 参数,我们为每个数据集生成了八个训练集和相应的模型。PathEX 的性能在包含来自 CAM 数据集的 48 张 WSI 的 13076 张瓦片图像和来自 PAIP 数据集的 10 张 WSI 的 6391 张瓦片图像的测试集上进行了评估。

结果

PathEX 可以通过调整 IoT 参数来提取注释区域边界周围的瓦片图像,而通过设置 BoT 参数可以排除注释区域内的空白瓦片图像。当将 IoT 从 0.1 调整到 1.0 并将 1-BoT 从 0.0 调整到 0.5 时,我们得到了 8 个训练集。实验表明,集 C 具有成为最有潜力的最佳候选者的潜力。然而,IoT 值范围为 0.2 到 0.5,1-BoT 值范围为 0.2 到 0.5 的组合也产生了有利的结果。

结论

在这项研究中,我们提出了 PathEX,这是一个集成了 IoT 和 BoT 算法的框架,用于在注释区域的边界提取瓦片图像,同时排除这些区域内的空白瓦片。研究人员可以方便地为 IoT 和 BoT 设置阈值,以方便他们在自己的研究中提取瓦片图像。这项研究的结果为数字病理学应用中的瓦片图像提取提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d6c/11361590/7db06c4de826/pone.0304702.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验