Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China.
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.
Biofabrication. 2023 Aug 21;15(4). doi: 10.1088/1758-5090/acee21.
Organoid technology offers sophisticatedhuman models for basic research and drug development. However, low batch-to-batch reproducibility and high cost due to laborious procedures and materials prevent organoid culture standardization for automation and high-throughput applications. Here, using a novel platform based on the findings that Pluronic F-127 (PF-127) could trigger highly uniform spheroid assembly through a mechanism different from plate coating, we develop a one-pot organoid differentiation strategy. Using our strategy, we successfully generate cortical, nephron, hepatic, and lung organoids with improved reproducibility compared to previous methods while reducing the original costs by 80%-95%. In addition, we adapt our platform to microfluidic chips allowing automated culture. We showcase that our platform can be applied to tissue-specific screening, such as drug toxicity and transfection reagents testing. Finally, we generateknockout tissue-specific organoids and showmodulates multiple signaling pathways fine-tuning the differentiation of nephron and hepatic organoids and suppresses immune responses in cortical organoids. In summary, our strategy provides a powerful platform for advancing organoid research and studying human development and diseases.
类器官技术为基础研究和药物开发提供了复杂的人类模型。然而,由于繁琐的程序和材料,批次间的重现性低,成本高,阻碍了类器官培养的标准化,无法实现自动化和高通量应用。在这里,我们使用一种新颖的平台,基于发现普朗尼克 F-127(PF-127)可以通过不同于平板涂层的机制触发高度均匀的球体组装,开发了一种一锅法类器官分化策略。使用我们的策略,我们成功生成了皮质、肾单位、肝和肺类器官,与以前的方法相比,重现性得到了提高,同时将原始成本降低了 80%-95%。此外,我们将我们的平台适应于微流控芯片,实现了自动化培养。我们展示了我们的平台可以应用于组织特异性筛选,如药物毒性和转染试剂测试。最后,我们生成了基因敲除的组织特异性类器官,并表明可以调节多个信号通路,精细调控肾单位和肝类器官的分化,并抑制皮质类器官中的免疫反应。总之,我们的策略为推进类器官研究以及研究人类发育和疾病提供了一个强大的平台。