Suppr超能文献

一种用于呼吸过程中 3DCT-2DUS 肾脏配准的两步深度学习方法。

A two-step deep learning method for 3DCT-2DUS kidney registration during breathing.

机构信息

Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way #21-01 Connexis South, Singapore, 138632, Republic of Singapore.

Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People's Republic of China.

出版信息

Sci Rep. 2023 Aug 8;13(1):12846. doi: 10.1038/s41598-023-40133-5.

Abstract

This work proposed KidneyRegNet, a novel deep registration pipeline for 3D CT and 2D U/S kidney scans of free breathing, which comprises a feature network, and a 3D-2D CNN-based registration network. The feature network has handcrafted texture feature layers to reduce the semantic gap. The registration network is an encoder-decoder structure with loss of feature-image-motion (FIM), which enables hierarchical regression at decoder layers and avoids multiple network concatenation. It was first pretrained with a retrospective dataset cum training data generation strategy and then adapted to specific patient data under unsupervised one-cycle transfer learning in onsite applications. The experiment was performed on 132 U/S sequences, 39 multiple-phase CT and 210 public single-phase CT images, and 25 pairs of CT and U/S sequences. This resulted in a mean contour distance (MCD) of 0.94 mm between kidneys on CT and U/S images and MCD of 1.15 mm on CT and reference CT images. Datasets with small transformations resulted in MCDs of 0.82 and 1.02 mm, respectively. Large transformations resulted in MCDs of 1.10 and 1.28 mm, respectively. This work addressed difficulties in 3DCT-2DUS kidney registration during free breathing via novel network structures and training strategies.

摘要

这项工作提出了 KidneyRegNet,这是一种用于 3D CT 和 2D U/S 自由呼吸肾脏扫描的新型深度配准管道,它由一个特征网络和一个基于 3D-2D CNN 的配准网络组成。特征网络具有手工制作的纹理特征层,可缩小语义差距。配准网络是一个具有特征-图像-运动损失(FIM)的编码器-解码器结构,它可以在解码器层进行分层回归,并避免多个网络串联。它首先使用回顾性数据集和训练数据生成策略进行预训练,然后在现场应用中进行无监督的单周期迁移学习,适用于特定患者的数据。该实验在 132 个 U/S 序列、39 个多期 CT 和 210 个公共单相 CT 图像以及 25 对 CT 和 U/S 序列上进行。这导致 CT 和 U/S 图像上肾脏的平均轮廓距离(MCD)为 0.94mm,CT 和参考 CT 图像上的 MCD 为 1.15mm。变换较小的数据集的 MCD 分别为 0.82mm 和 1.02mm。变换较大的数据集的 MCD 分别为 1.10mm 和 1.28mm。这项工作通过新的网络结构和训练策略解决了 3DCT-2DUS 肾脏配准在自由呼吸期间的困难。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0932/10409729/d490e0d20a8f/41598_2023_40133_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验