Suppr超能文献

基因靶向化学聚合物组装,使其特异性地定位于活神经元表面膜的细胞外区。

Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Sci Adv. 2023 Aug 9;9(32):eadi1870. doi: 10.1126/sciadv.adi1870.

Abstract

Multicellular biological systems, particularly living neural networks, exhibit highly complex organization properties that pose difficulties for building cell-specific biocompatible interfaces. We previously developed an approach to genetically program cells to assemble structures that modify electrical properties of neurons in situ, opening up the possibility of building minimally invasive cell-specific structures and interfaces. However, the efficiency and biocompatibility of this approach were challenged by limited membrane targeting of the constructed materials. Here, we design a method for highly localized expression of enzymes targeted to the plasma membrane of primary neurons, with minimal intracellular retention. Next, we show that polymers synthesized in situ by this approach form dense extracellular clusters selectively on the targeted cell membrane and that neurons remain viable after polymerization. Last, we show generalizability of this method across a range of design strategies. This platform can be readily extended to incorporate a broad diversity of materials onto specific cell membranes within tissues and may further enable next-generation biological interfaces.

摘要

多细胞生物系统,特别是活体神经网络,表现出高度复杂的组织特性,这给构建针对特定细胞的生物相容性界面带来了困难。我们之前开发了一种方法,通过基因编程使细胞组装结构,从而原位改变神经元的电特性,为构建微创、针对特定细胞的结构和界面开辟了可能性。然而,由于构建材料对细胞膜的靶向性有限,这种方法的效率和生物相容性受到了挑战。在这里,我们设计了一种方法,可将目标定位于原代神经元质膜的酶进行高度局部化表达,同时最大限度地减少细胞内保留。接下来,我们表明,通过这种方法原位合成的聚合物选择性地在靶向细胞膜上形成密集的细胞外簇,聚合后神经元仍然存活。最后,我们证明了这种方法在一系列设计策略中的通用性。该平台可以很容易地扩展到将广泛的材料纳入组织内的特定细胞膜上,并且可能进一步实现下一代生物界面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/585d/10411876/76faaece720e/sciadv.adi1870-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验