Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada.
Nat Commun. 2023 Aug 9;14(1):4810. doi: 10.1038/s41467-023-40468-7.
Ex vivo lung perfusion (EVLP) is a data-intensive platform used for the assessment of isolated lungs outside the body for transplantation; however, the integration of artificial intelligence to rapidly interpret the large constellation of clinical data generated during ex vivo assessment remains an unmet need. We developed a machine-learning model, termed InsighTx, to predict post-transplant outcomes using n = 725 EVLP cases. InsighTx model AUROC (area under the receiver operating characteristic curve) was 79 ± 3%, 75 ± 4%, and 85 ± 3% in training and independent test datasets, respectively. Excellent performance was observed in predicting unsuitable lungs for transplantation (AUROC: 90 ± 4%) and transplants with good outcomes (AUROC: 80 ± 4%). In a retrospective and blinded implementation study by EVLP specialists at our institution, InsighTx increased the likelihood of transplanting suitable donor lungs [odds ratio=13; 95% CI:4-45] and decreased the likelihood of transplanting unsuitable donor lungs [odds ratio=0.4; 95%CI:0.16-0.98]. Herein, we provide strong rationale for the adoption of machine-learning algorithms to optimize EVLP assessments and show that InsighTx could potentially lead to a safe increase in transplantation rates.
离体肺灌注 (EVLP) 是一种数据密集型平台,用于评估体外供体肺用于移植;然而,将人工智能集成到快速解释离体评估过程中产生的大量临床数据仍然是一个未满足的需求。我们开发了一种名为 InsighTx 的机器学习模型,用于使用 n = 725 个 EVLP 病例预测移植后的结果。InsighTx 模型在训练和独立测试数据集的 AUROC(接受者操作特征曲线下的面积)分别为 79 ± 3%、75 ± 4%和 85 ± 3%。在预测不适合移植的肺(AUROC:90 ± 4%)和移植后有良好结果的肺(AUROC:80 ± 4%)方面,表现出了优异的性能。在我们机构的 EVLP 专家进行的回顾性和盲法实施研究中,InsighTx 增加了适合移植的供体肺的移植可能性 [比值比=13;95%CI:4-45],并降低了不适合移植的供体肺的移植可能性 [比值比=0.4;95%CI:0.16-0.98]。在此,我们为采用机器学习算法优化 EVLP 评估提供了强有力的依据,并表明 InsighTx 可能有潜力安全地提高移植率。